Make sure MATLAB does not recalculate symbolic expression

孤者浪人 提交于 2019-12-01 11:39:43

You could wrap your function into some kind of Function-Factory, which does not return numerical results, but a function that can be evaluated:

(I had to replace the call syms with sym('mu'), because for some reason it kept calling a mutools function in line omega = .... I did also change the call to gradient to make sure the arguments are in correct order, and mu will be treated as constant.)

function GradOmega = GradOmegaFactory()
x = sym('x');
y = sym('y');
z = sym('z');
mu = sym('mu');
omega = 0.5*(x^2+y^2+z^2) + (1-mu)/((x+mu)^2+y^2+z^2)^0.5 + mu/((x+mu-1)^2+y^2+z^2)^0.5;
symGradient = gradient(omega,{'x','y','z'});
GradOmega = matlabFunction(symGradient, 'vars', {'x','y','z','mu'});
end

Then you would call it via:

GradOmega = GradOmegaFactory();
result1 = GradOmega(numX1, numY1, numZ1, numMu1);
result2 = GradOmega(numX2, numY2, numZ2, numMu2);
result3 = GradOmega(numX3, numY3, numZ3, numMu3);
...

Even better:

You could go even more fancy and use a wrapper function GradOmega which builds such a function inside and makes it persistent, to get the same interface you had with your initial approach. The first time you call the function GradOmega the symbolic expression is evaluated, but on each consecutive call you will only have to evaluate the generated function handle, which means it should be nearly as fast as if you hard-coded it.

function result = GradOmega(numX, numY, numZ, numMu)
persistent numericalGradOmega;
if isempty(numericalGradOmega)
    numericalGradOmega = GradOmegaFactory();
end
result = numericalGradOmega(numX, numY, numZ, numMu);
end

Use this like you would use your original version

result = GradOmega(numX, numY, numZ, numMu);

Just copy and paste both functions into a single GradOmega.m file. (GradOmega should be the first function in the file.)


Another tip: You can even evaluate this function using vectors. Instead of calling GradOmega(1,2,3,4) and GradOmega(5,6,7,8) afterwards, you can save the time overhead via the call GradOmega([1,5], [2,6], [3,7], [4,8]) using row vectors.

Yet another tip: To clean up your code even more, you could also put the first lines into a separate symOmega.m file.

function omega = symOmega()
x = sym('x');
y = sym('y');
z = sym('z');
mu = sym('mu');
omega = 0.5*(x^2+y^2+z^2) + (1-mu)/((x+mu)^2+y^2+z^2)^0.5 + mu/((x+mu-1)^2+y^2+z^2)^0.5;

This way you don't have to have a copy of this symbolic expression in every file you use it. This can be beneficial if you also want to evaluate Omega itself, as you then can make use of the same Factory-approach listed in this answer. You would end up with the following files: symOmega.m, Omega.m and GradOmega.m, where only the file symOmega.m has the actual mathematical formula and the other two files make use of symOmega.m.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!