问题
I'm having trouble directing flow though a pipeline with haskell-pipes. Basically, I analyze a bunch of files and then I have to either
- print results to the terminal in a human-friendly way
- encode results to JSON
The chosen path depends upon a command line option.
In the second case, I have to output an opening bracket, then every incoming value followed by a comma and then a closing bracket. Currently insertCommas
never terminates, so the closing bracket is never outputted.
import Pipes
import Data.ByteString.Lazy as B
import Data.Aeson (encode)
insertCommas :: Consumer B.ByteString IO ()
insertCommas = do
first <- await
lift $ B.putStr first
for cat $ \obj -> lift $ do
putStr ","
B.putStr obj
jsonExporter :: Consumer (FilePath, AnalysisResult) IO ()
jsonExporter = do
lift $ putStr "["
P.map encode >-> insertCommas
lift $ putStr "]"
exportStream :: Config -> Consumer (FilePath, AnalysisResult) IO ()
exportStream conf =
case outputMode conf of
JSON -> jsonExporter
_ -> P.map (export conf) >-> P.stdoutLn
main :: IO ()
main = do
-- The first two lines are Docopt stuff, not relevant
args <- parseArgsOrExit patterns =<< getArgs
ins <- allFiles $ args `getAllArgs` argument "paths"
let conf = readConfig args
runEffect $ each ins
>-> P.mapM analyze
>-> P.map (filterResults conf)
>-> P.filter filterNulls
>-> exportStream conf
回答1:
I think you should 'commify' with pipes-group. It has an intercalates
, but not an intersperse, but it's not a big deal to write. You should stay away from the Consumer end, I think, for this sort of problem.
{-#LANGUAGE OverloadedStrings #-}
import Pipes
import qualified Pipes.Prelude as P
import qualified Data.ByteString.Lazy.Char8 as B
import Pipes.Group
import Lens.Simple -- or Control.Lens or Lens.Micro or anything with view/^.
import System.Environment
intersperse_ :: Monad m => a -> Producer a m r -> Producer a m r
intersperse_ a producer = intercalates (yield a) (producer ^. chunksOf 1)
main = do
args <- getArgs
let op prod = case args of
"json":_ -> yield "[" *> intersperse_ "," prod <* yield "]"
_ -> intersperse_ " " prod
runEffect $ op producer >-> P.mapM_ B.putStr
putStrLn ""
where
producer = mapM_ yield (B.words "this is a test")
which give me this
>>> :main json
[this,is,a,test]
>>> :main ---
this is a test
回答2:
AFAIK a Consumer cannot detect the end of a stream. In order to do that you need to use a Pipes.Parser and invert the control.
Here is a Parser which inserts commas between String elements:
import Pipes
import qualified Pipes.Prelude as P
import Pipes.Parse (draw, evalStateT)
commify = do
lift $ putStrLn "["
m1 <- draw
case m1 of
Nothing -> lift $ putStrLn "]"
Just x1 -> do
lift $ putStrLn x1
let loop = do mx <- draw
case mx of
Nothing -> lift $ putStrLn "]"
Just x -> lift (putStr "," >> putStrLn x) >> loop
loop
test1 = evalStateT commify ( mapM_ yield (words "this is a test") )
test2 = evalStateT commify P.stdinLn
To handle the different output formats I would probably make both formats a Parser:
exportParser = do
mx <- draw
case mx of
Nothing -> return ()
Just x -> (lift $ putStrLn $ export x) >> exportParser
and then:
let parser = case outputMode of
JSON -> commify
_ -> exportParser
evalStateT parser (P.mapM analyze
>-> P.map (filterResults conf)
>-> P.filter filterNulls)
There is probably a slicker way to write exportParser
in terms of foldAllM
. You can also use the MaybeT
transformer to more succinctly write the commify
parser. I've written both out explicitly to make them easier to understand.
来源:https://stackoverflow.com/questions/33464543/forking-the-streaming-flow-in-haskell-pipes