问题
I need to create a numpy 2D array which represents a binary mask of a polygon, using standard Python packages.
- input: polygon vertices, image dimensions
- output: binary mask of polygon (numpy 2D array)
(Larger context: I want to get the distance transform of this polygon using scipy.ndimage.morphology.distance_transform_edt.)
Can anyone show me how to do this?
回答1:
The answer turns out to be quite simple:
import numpy
from PIL import Image, ImageDraw
# polygon = [(x1,y1),(x2,y2),...] or [x1,y1,x2,y2,...]
# width = ?
# height = ?
img = Image.new('L', (width, height), 0)
ImageDraw.Draw(img).polygon(polygon, outline=1, fill=1)
mask = numpy.array(img)
回答2:
As a slightly more direct alternative to @Anil's answer, matplotlib has matplotlib.nxutils.points_inside_poly that can be used to quickly rasterize an arbitrary polygon. E.g.
import numpy as np
from matplotlib.nxutils import points_inside_poly
nx, ny = 10, 10
poly_verts = [(1,1), (5,1), (5,9),(3,2),(1,1)]
# Create vertex coordinates for each grid cell...
# (<0,0> is at the top left of the grid in this system)
x, y = np.meshgrid(np.arange(nx), np.arange(ny))
x, y = x.flatten(), y.flatten()
points = np.vstack((x,y)).T
grid = points_inside_poly(points, poly_verts)
grid = grid.reshape((ny,nx))
print grid
Which yields (a boolean numpy array):
[[False False False False False False False False False False]
[False True True True True False False False False False]
[False False False True True False False False False False]
[False False False False True False False False False False]
[False False False False True False False False False False]
[False False False False True False False False False False]
[False False False False False False False False False False]
[False False False False False False False False False False]
[False False False False False False False False False False]
[False False False False False False False False False False]]
You should be able to pass grid
to any of the scipy.ndimage.morphology functions quite nicely.
回答3:
An update on Joe's comment.
Matplotlib API has changed since the comment was posted, and now you need to use a method provided by a submodule matplotlib.path
.
Working code is below.
import numpy as np
from matplotlib.path import Path
nx, ny = 10, 10
poly_verts = [(1,1), (5,1), (5,9),(3,2),(1,1)]
# Create vertex coordinates for each grid cell...
# (<0,0> is at the top left of the grid in this system)
x, y = np.meshgrid(np.arange(nx), np.arange(ny))
x, y = x.flatten(), y.flatten()
points = np.vstack((x,y)).T
path = Path(poly_verts)
grid = path.contains_points(points)
grid = grid.reshape((ny,nx))
print grid
回答4:
You could try to use python's Image Library, PIL. First you initialize the canvas. Then you create a drawing object, and you start making lines. This is assuming that the polygon resides in R^2 and that the vertex list for the input are in the correct order.
Input = [(x1, y1), (x2, y2), ..., (xn, yn)] , (width, height)
from PIL import Image, ImageDraw
img = Image.new('L', (width, height), 0) # The Zero is to Specify Background Color
draw = ImageDraw.Draw(img)
for vertex in range(len(vertexlist)):
startpoint = vertexlist[vertex]
try: endpoint = vertexlist[vertex+1]
except IndexError: endpoint = vertexlist[0]
# The exception means We have reached the end and need to complete the polygon
draw.line((startpoint[0], startpoint[1], endpoint[0], endpoint[1]), fill=1)
# If you want the result as a single list
# You can make a two dimensional list or dictionary by iterating over the height and width variable
list(img.getdata())
# If you want the result as an actual Image
img.save('polgon.jpg', 'JPEG')
Is this what you were looking for, or were you asking something different?
回答5:
As a slightly alternative to @Yusuke N. answer by using matplotlib.path
, just as efficient as the one by from PIL import Image, ImageDraw
(no need to install Pillow
, ,no need to consider integer
or float
. useful me, Ha?)
working code is below:
import pylab as plt
import numpy as np
from matplotlib.path import Path
width, height=2000, 2000
polygon=[(0.1*width, 0.1*height), (0.15*width, 0.7*height), (0.8*width, 0.75*height), (0.72*width, 0.15*height)]
poly_path=Path(polygon)
x, y = np.mgrid[:height, :width]
coors=np.hstack((x.reshape(-1, 1), y.reshape(-1,1))) # coors.shape is (4000000,2)
mask = poly_path.contains_points(coors)
plt.imshow(mask.reshape(height, width))
plt.show()
And the result image is below, where dark area is False
, bright area is True
.
来源:https://stackoverflow.com/questions/3654289/scipy-create-2d-polygon-mask