Confidence Interval of lmer model producing NA

廉价感情. 提交于 2019-11-30 21:22:47

问题


NA is occurring for confidence interval of lmer model ? How can I get rid of it ?

simfun <- function(J,n_j,g00,g10,g01,g11,sig2_0,sig01,sig2_1){
     N <- sum(rep(n_j,J))  

     x <- rnorm(N)         
     z <- rnorm(J)         

     mu <- c(0,0)
     sig <- matrix(c(sig2_0,sig01,sig01,sig2_1),ncol=2)
     u   <- rmvnorm(J,mean=mu,sigma=sig)

     b_0j <- g00 + g01*z + u[,1]
     b_1j <- g10 + g11*z + u[,2]

      y <- rep(b_0j,each=n_j)+rep(b_1j,each=n_j)*x + rnorm(N,0,sqrt(0.5))
     sim_data <- data.frame(Y=y,X=x,Z=rep(z,each=n_j),group=rep(1:J,each=n_j))

  } 


noncoverage <- function(J,n_j,g00,g10,g01,g11,sig2_0,sig01,sig2_1){
    dat <- simfun(J,n_j,g00,g10,g01,g11,sig2_0,sig01,sig2_1)
    fit <- lmer(Y~X+Z+X:Z+(X||group),data=dat,control=lmerControl(optCtrl=list(maxfun=20000)))

   ci=confint.merMod(fit,oldName=FALSE,c("sd_(Intercept)|group","sd_X|group","sigma"))

    ci.u0 = as.numeric(ci[1,])
    nc.u0 = ifelse((ci.u0[1]<sqrt(sig2_0) & ci.u0[2]>sqrt(sig2_0)),0,1)

    ci.u1 = as.numeric(ci[2,])
    nc.u1 = ifelse((ci.u1[1]<sqrt(sig2_1) & ci.u1[2]>sqrt(sig2_1)),0,1)

    ci.e = as.numeric(ci[3,])
    nc.e = ifelse((ci.e[1]<sqrt(0.5) & ci.e[2]>sqrt(0.5)),0,1)

    nc = data.frame(nc.u0=nc.u0,nc.u1=nc.u1,nc.e=nc.e)

  }

 fit <- replicate(10,noncoverage(10,5,1,.3,.3,.3,(1/18),0,(1/18)))

 fit
, , 1

  nc.u0 nc.u1 nc.e
 1 0     0     0   

 , , 2

  nc.u0 nc.u1 nc.e
 1 0     0     0   

 , , 3

 nc.u0 nc.u1 nc.e
1 1     0     0   

, , 4

 nc.u0 nc.u1 nc.e
1 NA    0     0   

 , , 5

  nc.u0 nc.u1 nc.e
1 0     NA    0   

, , 6

 nc.u0 nc.u1 nc.e
1 1     0     0   

 , , 7

 nc.u0 nc.u1 nc.e
1 0     0     1   

 , , 8

  nc.u0 nc.u1 nc.e
1 0     0     0   

 , , 9

 nc.u0 nc.u1 nc.e
1 0     0     0   

, , 10

 nc.u0 nc.u1 nc.e
1 0     NA    0   

回答1:


The problem here (which has been fixed in the development version of lme4 ...) is that likelihood profiles are constructed using spline fits. If the profile is too flat, the spline fit will fail. The development version now tries to substitute linear interpolation in this case.

simfun <- function(J,n_j,g00,g10,g01,g11,sig2_0,sig01,sig2_1){
    N <- sum(rep(n_j,J))  
    x <- rnorm(N)         
    z <- rnorm(J)         
    mu <- c(0,0)
    sig <- matrix(c(sig2_0,sig01,sig01,sig2_1),ncol=2)
    u   <- MASS::mvrnorm(J,mu=mu,Sigma=sig)
    b_0j <- g00 + g01*z + u[,1]
    b_1j <- g10 + g11*z + u[,2]
    y <- rep(b_0j,each=n_j)+rep(b_1j,each=n_j)*x + rnorm(N,0,sqrt(0.5))
    sim_data <- data.frame(Y=y,X=x,Z=rep(z,each=n_j),
                           group=rep(1:J,each=n_j))
} 
set.seed(102)
dat <- simfun(10,5,1,.3,.3,.3,(1/18),0,(1/18))
library("lme4") ## version 1.1-9
fit <- lmer(Y~X+Z+X:Z+(X||group),data=dat)
pp <- profile(fit,"theta_",quiet=TRUE)  ## warnings
cc <- confint(pp)  ## warning
##            2.5 %    97.5 %
## .sig01 0.0000000 0.2880457
## .sig02 0.0000000 0.5427609
## .sigma 0.5937762 0.8802176

You should also note that these confidence intervals are based on ML, not REML, fits ...



来源:https://stackoverflow.com/questions/31796299/confidence-interval-of-lmer-model-producing-na

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!