PostgreSQL query taking too long

烈酒焚心 提交于 2019-11-30 13:58:43
Erwin Brandstetter

Finally successful attempt

My other idea - as per comment:
What happens if you remove the LIMIT clause for the case where no role is found? I have a suspicion that it will result in the fast plan - making LIMIT the culprit here.

You may be able to solve your problem by pushing down your query into a subquery and applying the LIMIT only to the outer query (untested):

SELECT *
FROM  (
   SELECT *
   FROM   "Roles"         AS r  
   JOIN   "Users"         AS u  ON u."RoleId" = r."Id"
   JOIN   "PaymentOrders" AS po ON po."UserId" = u."Id"
   JOIN   "Payments"      AS p  ON p."PaymentOrderId" = po."Id"
   WHERE  r."Name" = 'Moses'
  ) x
LIMIT  1000;

As per comment: @Davita tested and ruled out this workaround. @Kevin's answer later clarified why the workaround failed: use a CTE instead of the subquery.
Or check for existence of a role, before you employ the big query to eliminate the bad case.

This leaves questions for PostgreSQL concerning the optimization of queries with LIMIT.

There have been a number of recent bug reports concerning query plans with LIMIT. I quote Simon Riggs commenting on one of these reports here:

Very bad plans with LIMIT are frequent. This is bad for us because adding LIMIT usually/is supposed to make queries faster, not slower.

We need to do something.

First attempt with no success

I missed that @Craig already mentioned join_collapse_limit in the comments. So that was of limited use:

Does reordering the JOIN clauses have any effect?

SELECT *
FROM   "Roles"         AS r  
JOIN   "Users"         AS u  ON u."RoleId" = r."Id"
JOIN   "PaymentOrders" AS po ON po."UserId" = u."Id"
JOIN   "Payments"      AS p  ON p."PaymentOrderId" = po."Id"
WHERE  r."Name" = 'Moses'
LIMIT  1000

Related: you did not by chance mess with the setting of join_collapse_limit or geqo_threshold? Very low setting might prevent the planner from reordering your JOIN clauses, which might explain your problem.

If that does not solve the case, I would try to create an index on "Roles"(Name). Not that this makes any sense with only 15 rows, but I would try to eliminate the suspicion that invalid statistics or cost parameters (or even a bug) make the planner believe the sequential scan on "Roles" to be more expensive than it is.

As suggested a couple times on the thread on the PostgreSQL community performance list, you can work around this issue by forcing an optimization barrier using a CTE, like this:

WITH x AS
(
SELECT *
  FROM "Payments" AS p
  JOIN "PaymentOrders" AS po ON po."Id" = p."PaymentOrderId"
  JOIN "Users" as u ON u."Id" = po."UserId"
  JOIN "Roles" as r ON u."RoleId" = r."Id"
  WHERE r."Name" = 'Moses'
)
SELECT * FROM x
  LIMIT 1000;

You may also get a good plan for your original query if you set a higher statistics target for "Roles"."Name" and then ANALYZE. For example:

ALTER TABLE "Roles"
  ALTER COLUMN "Name" SET STATISTICS 1000;
ANALYZE "Roles";

If it expects fewer matching rows to exist in the table, as it is likely to do with more fine-grained statistics, it will assume that it needs to read a higher percentage of the table to find them on a sequential scan. This may cause it to prefer using the index instead of sequentially scanning the table.

You might also get a better plan for the original query by adjusting some of the planner's costing constants and caching assumptions. Things you could try in a single session, with the SET command:

  • Reduce random_page_cost. This is largely based on how heavily cached your data is. Given a table with hundreds of millions of rows you probably don't want to go below 2; although if the active data set in your database is heavily cached you can reduce it all the way down to the setting for seq_page_cost, and you may want to reduce both of them by an order of magnitude.

  • Make sure that effective_cache_size is set to the sum of shared_buffers and whatever your OS is caching. This doesn't allocate any memory; it just tells the optimizer how likely index pages are to remain in cache during heavy access. A higher setting makes indexes look better when compared to sequential scans.

  • Increase cpu_tuple_cost to somewhere in the range of 0.03 to 0.05. I have found the default of 0.01 to be too low. I often get better plans by increasing it, and have never seen a value in the range I suggested cause worse plans to be chosen.

  • Make sure that your work_mem setting is reasonable. In most environments that I've run PostgreSQL, that is in the 16MB to 64MB range. This will allow better use of hash tables, bitmap index scans, sorts, etc., and can completely change your plans; almost always for the better. Beware setting this to a level that yields good plans if you have a large number of connections -- you should allow for the fact that each connection can allocate this much memory per node of the query it is running. The "rule of thumb" is to figure you will hit peaks around this setting times max_connections. This is one of the reasons that it is wise to limit your actual number of database connections using a connection pool.

If you find a good combination of settings for these, you might want to make those changes to your postgresql.conf file. If you do that, monitor closely for performance regressions, and be prepared to tweak the settings for the best performance of your overall load.

I agree that we need to do something to nudge the optimizer away from "risky" plans, even if they look like they will run faster on average; but I will be a little surprised if tuning your configuration so that the optimizer better models the actual costs of each alternative doesn't cause it to use an efficient plan.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!