R: Interaction Plot with a continuous and a categorical variable for a GLMM (lme4)

依然范特西╮ 提交于 2019-11-30 13:31:57

问题


I would like to make an interaction plot to visually display the difference or similarity in slopes of interaction of a categorical variable (4 levels) and a standardized continuous variable from the results of a regression model.

with(GLMModel, interaction.plot(continuous.var, categorical.var, response.var)) Is not what I am looking for. It produces a plot in which the slope changes for each value of the continuous variable. I'm looking to make a plot with constant slopes as in the following plot:

Any ideas?

I fit a model of the form fit<-glmer(resp.var ~ cont.var*cat.var + (1|rand.eff) , data = sample.data , poisson) Here is some sample data:

structure(list(cat.var = structure(c(4L, 4L, 1L, 4L, 1L, 2L, 
1L, 1L, 1L, 1L, 4L, 1L, 1L, 3L, 2L, 4L, 1L, 1L, 1L, 2L, 1L, 2L, 
2L, 1L, 3L, 1L, 1L, 2L, 4L, 1L, 2L, 1L, 1L, 4L, 1L, 3L, 1L, 3L, 
3L, 4L, 3L, 4L, 1L, 3L, 3L, 1L, 2L, 3L, 4L, 3L, 4L, 2L, 1L, 1L, 
4L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 4L, 4L, 3L, 3L, 1L, 3L, 3L, 
3L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 4L, 1L, 3L, 4L, 1L, 1L, 4L, 
1L, 3L, 1L, 1L, 3L, 2L, 4L, 1L, 4L, 1L, 4L, 4L, 4L, 4L, 2L, 4L, 
4L, 1L, 2L, 1L, 4L, 3L, 1L, 1L, 3L, 2L, 4L, 4L, 1L, 4L, 1L, 3L, 
2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 4L, 1L, 
2L, 2L, 1L, 1L, 2L, 3L, 1L, 4L, 4L, 4L, 1L, 4L, 4L, 3L, 2L, 4L, 
1L, 3L, 1L, 1L, 4L, 4L, 2L, 4L, 1L, 1L, 3L, 4L, 2L, 1L, 3L, 3L, 
4L, 3L, 2L, 3L, 1L, 4L, 2L, 2L, 1L, 4L, 1L, 2L, 3L, 4L, 1L, 4L, 
2L, 1L, 3L, 3L, 3L, 4L, 1L, 1L, 1L, 3L, 1L, 3L, 4L, 2L, 1L, 4L, 
1L, 1L, 1L, 2L, 1L, 1L, 4L, 1L, 3L, 1L, 2L, 1L, 4L, 1L, 2L, 4L, 
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 4L, 1L, 4L, 3L, 
3L, 3L, 4L, 1L, 3L, 1L, 1L, 4L, 4L, 4L, 4L, 2L, 1L, 1L, 3L, 2L, 
1L, 4L, 4L, 2L, 4L, 2L, 4L, 1L, 3L, 4L, 1L, 1L, 2L, 3L, 2L, 4L, 
1L, 1L, 3L, 4L, 2L, 2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 4L, 1L, 4L, 
2L, 4L, 3L, 4L, 2L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 1L, 4L, 4L, 1L, 
4L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 3L, 3L, 2L, 2L, 1L, 1L, 4L, 
1L, 4L, 3L, 1L, 2L, 1L, 4L, 2L, 4L, 4L, 1L, 2L, 1L, 1L, 1L, 4L, 
1L, 4L, 1L, 2L, 1L, 3L, 1L, 3L, 3L, 1L, 1L, 4L, 3L, 1L, 4L, 1L, 
2L, 4L, 1L, 1L, 3L, 3L, 2L, 4L, 4L, 1L, 1L, 2L, 2L, 1L, 2L, 4L, 
3L, 4L, 4L, 4L, 4L, 1L, 3L, 1L, 2L, 2L, 2L, 4L, 2L, 3L, 4L, 1L, 
3L, 2L, 2L, 1L, 1L, 1L, 3L, 1L, 2L, 2L, 1L, 1L, 3L, 2L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 1L, 4L, 4L, 4L, 3L, 3L, 2L, 1L, 3L, 2L, 1L, 
1L, 1L, 4L, 1L, 1L, 2L, 3L, 1L, 1L, 2L, 4L, 3L, 2L, 4L, 3L, 2L, 
1L, 3L, 1L, 3L, 1L, 4L, 3L, 1L, 4L, 4L, 2L, 4L, 1L, 1L, 2L, 4L, 
4L, 2L, 3L, 4L, 4L, 3L, 1L, 4L, 1L, 2L, 4L, 1L, 1L, 4L, 1L, 1L, 
1L, 1L, 1L, 3L, 4L, 1L, 4L, 4L, 2L, 2L, 2L, 2L, 3L, 4L, 4L, 1L, 
1L, 4L, 2L, 3L, 3L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 4L, 2L, 
3L, 1L, 1L, 1L, 4L, 1L, 1L, 4L, 4L, 4L, 1L, 1L, 1L, 1L), .Label = c("A", 
"B", "C", "D"), class = "factor"), cont.var = c(-0.0682900527296927, 
0.546320421837542, -0.273160210918771, -0.887770685486005, 0.136580105459385, 
0.75119058002662, 0.546320421837542, -0.273160210918771, -0.682900527296927, 
0.136580105459385, 0.75119058002662, 0.75119058002662, 0.75119058002662, 
0.341450263648464, 0.75119058002662, 0.546320421837542, 0.546320421837542, 
-0.478030369107849, -0.478030369107849, -0.682900527296927, -0.682900527296927, 
0.546320421837542, -0.478030369107849, -0.0682900527296927, 0.136580105459385, 
0.136580105459385, 0.75119058002662, -0.478030369107849, 0.75119058002662, 
-0.887770685486005, 0.136580105459385, -0.478030369107849, 0.341450263648464, 
-0.682900527296927, -0.478030369107849, 0.341450263648464, -0.478030369107849, 
0.546320421837542, 0.75119058002662, -0.478030369107849, -0.273160210918771, 
0.546320421837542, -0.682900527296927, 0.75119058002662, -0.478030369107849, 
-0.887770685486005, 0.136580105459385, -0.887770685486005, -0.0682900527296927, 
-0.478030369107849, 0.546320421837542, 0.75119058002662, 0.136580105459385, 
-0.273160210918771, -0.273160210918771, 0.75119058002662, -0.682900527296927, 
0.136580105459385, -0.273160210918771, -0.273160210918771, 0.136580105459385, 
0.136580105459385, 0.341450263648464, 0.136580105459385, -0.273160210918771, 
-0.273160210918771, -0.682900527296927, -0.887770685486005, -0.0682900527296927, 
0.136580105459385, -0.0682900527296927, -0.273160210918771, -0.273160210918771, 
0.341450263648464, 0.75119058002662, -0.682900527296927, -0.0682900527296927, 
-0.273160210918771, -0.887770685486005, -0.0682900527296927, 
0.75119058002662, 0.546320421837542, 0.75119058002662, 0.75119058002662, 
-0.887770685486005, 0.341450263648464, 0.75119058002662, -0.887770685486005, 
0.136580105459385, -0.273160210918771, 0.546320421837542, 0.546320421837542, 
-0.682900527296927, 0.75119058002662, 0.136580105459385, -0.0682900527296927, 
-0.478030369107849, 0.75119058002662, -0.478030369107849, 0.341450263648464, 
0.136580105459385, -0.0682900527296927, -0.478030369107849, -0.0682900527296927, 
-0.0682900527296927, 0.546320421837542, -0.273160210918771, 0.75119058002662, 
0.341450263648464, 0.546320421837542, -0.478030369107849, 0.136580105459385, 
-0.887770685486005, -0.273160210918771, -0.273160210918771, -0.478030369107849, 
-0.478030369107849, 0.75119058002662, -0.682900527296927, -0.0682900527296927, 
0.546320421837542, 0.75119058002662, 0.546320421837542, 0.136580105459385, 
-0.478030369107849, 0.136580105459385, 0.546320421837542, -0.478030369107849, 
-0.0682900527296927, -0.0682900527296927, 0.546320421837542, 
-0.273160210918771, 0.136580105459385, -0.0682900527296927, 0.75119058002662, 
-0.0682900527296927, 0.546320421837542, -0.887770685486005, -0.0682900527296927, 
-0.682900527296927, -0.478030369107849, -0.478030369107849, -0.682900527296927, 
0.75119058002662, 0.341450263648464, -0.0682900527296927, 0.341450263648464, 
-0.0682900527296927, -0.887770685486005, -0.887770685486005, 
-0.273160210918771, -0.0682900527296927, 0.546320421837542, -0.0682900527296927, 
-0.0682900527296927, 0.75119058002662, -0.0682900527296927, -0.273160210918771, 
-0.478030369107849, 0.546320421837542, 0.546320421837542, 0.546320421837542, 
0.341450263648464, 0.136580105459385, -0.478030369107849, 0.136580105459385, 
0.136580105459385, 0.136580105459385, -0.478030369107849, -0.273160210918771, 
-0.273160210918771, -0.273160210918771, 0.341450263648464, -0.273160210918771, 
-0.0682900527296927, 0.136580105459385, 0.546320421837542, -0.478030369107849, 
-0.273160210918771, 0.546320421837542, 0.546320421837542, -0.273160210918771, 
-0.0682900527296927, 0.341450263648464, 0.546320421837542, -0.0682900527296927, 
0.136580105459385, -0.478030369107849, 0.75119058002662, -0.478030369107849, 
-0.682900527296927, -0.478030369107849, 0.136580105459385, -0.273160210918771, 
-0.0682900527296927, -0.887770685486005, -0.887770685486005, 
0.546320421837542, -0.273160210918771, 0.546320421837542, -0.478030369107849, 
0.546320421837542, -0.0682900527296927, 0.75119058002662, -0.273160210918771, 
0.546320421837542, 0.341450263648464, -0.0682900527296927, -0.0682900527296927, 
-0.0682900527296927, -0.887770685486005, 0.136580105459385, -0.273160210918771, 
-0.478030369107849, 0.75119058002662, 0.341450263648464, 0.546320421837542, 
-0.273160210918771, 0.546320421837542, 0.75119058002662, -0.273160210918771, 
0.75119058002662, 0.546320421837542, -0.273160210918771, -0.273160210918771, 
0.75119058002662, -0.273160210918771, -0.0682900527296927, 0.136580105459385, 
-0.478030369107849, 0.75119058002662, 0.75119058002662, -0.887770685486005, 
-0.887770685486005, 0.546320421837542, -0.682900527296927, -0.887770685486005, 
0.136580105459385, 0.75119058002662, 0.75119058002662, -0.478030369107849, 
0.136580105459385, 0.75119058002662, -0.273160210918771, -0.682900527296927, 
-0.273160210918771, 0.136580105459385, 0.546320421837542, -0.682900527296927, 
-0.478030369107849, 0.136580105459385, -0.682900527296927, -0.0682900527296927, 
-0.478030369107849, 0.136580105459385, -0.887770685486005, -0.273160210918771, 
-0.0682900527296927, -0.273160210918771, -0.887770685486005, 
0.546320421837542, 0.546320421837542, -0.478030369107849, -0.273160210918771, 
-0.0682900527296927, 0.136580105459385, -0.478030369107849, 0.75119058002662, 
0.341450263648464, 0.136580105459385, 0.136580105459385, 0.75119058002662, 
0.136580105459385, -0.0682900527296927, 0.546320421837542, -0.0682900527296927, 
-0.887770685486005, 0.75119058002662, 0.75119058002662, 0.546320421837542, 
-0.887770685486005, -0.0682900527296927, -0.682900527296927, 
-0.682900527296927, 0.75119058002662, 0.75119058002662, -0.478030369107849, 
0.546320421837542, -0.273160210918771, 0.75119058002662, -0.0682900527296927, 
0.546320421837542, -0.0682900527296927, -0.273160210918771, 0.546320421837542, 
0.75119058002662, -0.0682900527296927, 0.546320421837542, -0.682900527296927, 
-0.273160210918771, -0.0682900527296927, -0.478030369107849, 
-0.478030369107849, 0.136580105459385, -0.273160210918771, 0.136580105459385, 
0.546320421837542, 0.75119058002662, -0.273160210918771, 0.341450263648464, 
-0.273160210918771, 0.136580105459385, 0.546320421837542, 0.546320421837542, 
0.136580105459385, 0.136580105459385, -0.682900527296927, 0.341450263648464, 
0.341450263648464, -0.273160210918771, -0.682900527296927, -0.0682900527296927, 
0.75119058002662, -0.887770685486005, -0.478030369107849, -0.273160210918771, 
-0.478030369107849, -0.478030369107849, 0.136580105459385, -0.478030369107849, 
0.136580105459385, -0.478030369107849, 0.136580105459385, -0.0682900527296927, 
-0.273160210918771, 0.136580105459385, 0.341450263648464, -0.478030369107849, 
0.75119058002662, 0.136580105459385, 0.341450263648464, 0.546320421837542, 
-0.887770685486005, 0.75119058002662, 0.341450263648464, -0.0682900527296927, 
-0.478030369107849, 0.546320421837542, 0.136580105459385, -0.682900527296927, 
-0.0682900527296927, 0.341450263648464, -0.478030369107849, -0.0682900527296927, 
-0.478030369107849, -0.0682900527296927, 0.341450263648464, -0.478030369107849, 
-0.682900527296927, 0.75119058002662, -0.478030369107849, -0.682900527296927, 
0.341450263648464, -0.887770685486005, -0.478030369107849, 0.546320421837542, 
-0.887770685486005, -0.478030369107849, -0.478030369107849, 0.341450263648464, 
0.75119058002662, -0.682900527296927, 0.75119058002662, 0.75119058002662, 
0.341450263648464, -0.0682900527296927, 0.546320421837542, -0.0682900527296927, 
0.136580105459385, 0.136580105459385, 0.136580105459385, 0.136580105459385, 
0.546320421837542, 0.546320421837542, -0.0682900527296927, 0.75119058002662, 
-0.0682900527296927, -0.0682900527296927, -0.682900527296927, 
-0.273160210918771, -0.682900527296927, -0.478030369107849, 0.136580105459385, 
0.75119058002662, 0.546320421837542, 0.341450263648464, -0.887770685486005, 
-0.0682900527296927, 0.136580105459385, 0.75119058002662, -0.273160210918771, 
-0.682900527296927, 0.136580105459385, -0.478030369107849, -0.273160210918771, 
-0.273160210918771, 0.136580105459385, 0.341450263648464, -0.478030369107849, 
-0.0682900527296927, -0.682900527296927, 0.75119058002662, -0.273160210918771, 
-0.478030369107849, -0.0682900527296927, -0.0682900527296927, 
-0.273160210918771, -0.0682900527296927, -0.478030369107849, 
0.75119058002662, -0.0682900527296927, 0.136580105459385, 0.546320421837542, 
0.546320421837542, -0.478030369107849, -0.273160210918771, 0.546320421837542, 
-0.478030369107849, -0.682900527296927, 0.75119058002662, -0.0682900527296927, 
-0.682900527296927, -0.682900527296927, 0.75119058002662, 0.341450263648464, 
-0.478030369107849, 0.75119058002662, 0.136580105459385, -0.887770685486005, 
0.341450263648464, 0.341450263648464, 0.546320421837542, -0.273160210918771, 
0.136580105459385, 0.75119058002662, -0.0682900527296927, -0.682900527296927, 
-0.478030369107849, -0.478030369107849, 0.75119058002662, 0.546320421837542, 
-0.478030369107849, 0.546320421837542, 0.136580105459385, -0.887770685486005, 
0.75119058002662, -0.0682900527296927, 0.75119058002662, 0.75119058002662, 
-0.273160210918771, -0.682900527296927, 0.546320421837542, 0.546320421837542, 
-0.887770685486005, 0.75119058002662, -0.273160210918771, 0.546320421837542, 
-0.0682900527296927, 0.136580105459385, 0.341450263648464, -0.478030369107849, 
0.136580105459385, 0.136580105459385, -0.273160210918771, 0.546320421837542, 
-0.273160210918771, -0.273160210918771, -0.273160210918771, 0.75119058002662, 
-0.887770685486005, -0.887770685486005, -0.0682900527296927, 
-0.478030369107849, -0.0682900527296927, 0.75119058002662, -0.273160210918771, 
0.136580105459385, -0.478030369107849, -0.273160210918771, 0.136580105459385, 
0.75119058002662, 0.546320421837542, -0.478030369107849, -0.273160210918771, 
-0.273160210918771, 0.136580105459385, -0.273160210918771, -0.0682900527296927, 
0.75119058002662, 0.136580105459385), resp.var = c(2L, 1L, 0L, 
1L, 0L, 0L, 0L, 0L, 0L, 1L, 3L, 1L, 0L, 1L, 0L, 1L, 2L, 0L, 1L, 
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 2L, 
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 2L, 
0L, 3L, 2L, 0L, 2L, 2L, 0L, 0L, 0L, 1L, 1L, 3L, 1L, 2L, 0L, 1L, 
0L, 0L, 1L, 0L, 2L, 0L, 2L, 4L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 2L, 
3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 2L, 
0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 2L, 0L, 1L, 0L, 4L, 1L, 0L, 
1L, 1L, 0L, 0L, 0L, 1L, 3L, 0L, 2L, 0L, 0L, 2L, 1L, 0L, 0L, 2L, 
0L, 0L, 0L, 2L, 0L, 0L, 3L, 0L, 0L, 2L, 1L, 1L, 0L, 0L, 3L, 1L, 
1L, 2L, 0L, 2L, 0L, 2L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 2L, 2L, 1L, 0L, 0L, 1L, 
0L, 0L, 0L, 0L, 6L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 
1L, 0L, 0L, 1L, 3L, 1L, 0L, 2L, 3L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 
0L, 0L, 0L, 0L, 1L, 2L, 1L, 1L, 0L, 0L, 2L, 0L, 2L, 0L, 0L, 1L, 
1L, 0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 
0L, 1L, 0L, 2L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 
0L, 3L, 0L, 0L, 3L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
0L, 2L, 1L, 1L, 0L, 2L, 2L, 0L, 2L, 1L, 0L, 2L, 0L, 0L, 0L, 0L, 
3L, 0L, 2L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 2L, 0L, 1L, 1L, 0L, 1L, 
0L, 3L, 1L, 3L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 2L, 0L, 
2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 2L, 0L, 3L, 0L, 0L, 0L, 
0L, 1L, 0L, 0L, 3L, 1L, 1L, 2L, 0L, 0L, 3L, 0L, 0L, 0L, 1L, 1L, 
0L, 1L, 3L, 0L, 2L, 0L, 0L, 1L, 3L, 1L, 0L, 0L, 4L, 3L, 0L, 2L, 
0L, 0L, 0L, 3L, 0L, 0L, 2L, 3L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 
0L, 0L, 0L, 3L, 3L, 2L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 
0L, 0L, 0L, 1L, 0L, 2L, 0L, 0L, 1L, 0L, 0L, 1L, 2L, 0L, 1L, 0L, 
2L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 3L, 1L, 0L, 0L, 0L, 0L, 0L, 
1L, 2L, 0L, 2L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 
0L, 0L, 3L, 2L, 2L, 0L, 1L, 0L, 5L, 0L, 4L, 2L, 0L, 3L, 0L, 0L, 
1L, 1L, 0L, 0L, 0L, 2L, 0L, 1L, 0L, 3L, 0L, 2L, 0L, 0L, 0L, 2L, 
0L), rand.eff = c(37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 
37L, 37L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L)), .Names = c("cat.var", 
"cont.var", "resp.var", "rand.eff"), row.names = c(NA, 500L), class = "data.frame")

回答1:


Here's an answer of sorts (by the way, you had some missing quotation marks in your data frame above, which had to be fixed manually ...)

Fit the model:

library(lme4)
fit <- glmer(resp.var ~ cont.var:cat.var + (1|rand.eff) ,
           data = sample.data , poisson)

(Note that this is a slightly weird model specification -- forces all categories to have the same value at cont.var==0. Did you mean cont.var*cat.var?

library(ggplot2)
theme_update(theme_bw())  ## set white rather than gray background

Quick and dirty linear regressions:

ggplot(sample.data,aes(cont.var,resp.var,linetype=cat.var))+
    geom_smooth(method="lm",se=FALSE)

Now with a Poisson GLM (but not incorporating the random effect), and showing the data points:

ggplot(sample.data,aes(cont.var,resp.var,colour=cat.var))+
    stat_sum(aes(size=..n..),alpha=0.5)+
    geom_smooth(method="glm",family="poisson")

The next bit requires the development (r-forge) version of lme4, which has a predict method:

Set up data frame for prediction:

predframe <- with(sample.data,
                  expand.grid(cat.var=levels(cat.var),
                              cont.var=seq(min(cont.var),
                              max(cont.var),length=51)))

Predict at population level (REform=NA), on the linear predictor (logit) scale (this is the only way you will get straight lines on the plot)

predframe$pred.logit <- predict(fit,newdata=predframe,REform=NA)

minmaxvals <- range(sample.data$cont.var)

ggplot(predframe,aes(cont.var,pred.logit,linetype=cat.var))+geom_line()+
    geom_point(data=subset(predframe,cont.var %in% minmaxvals),
               aes(shape=cat.var))

Now on the response scale:
predframe$pred <- predict(fit,newdata=predframe,REform=NA,type="response")
ggplot(predframe,aes(cont.var,pred,linetype=cat.var))+geom_line()+
    geom_point(data=subset(predframe,cont.var %in% minmaxvals),
               aes(shape=cat.var))




回答2:


The jtools package (CRAN link) can make the plotting of this sort of model pretty straightforward. I'm the developer of that package.

We will fit the model like Ben did in his answer:

library(lme4)
fit <- glmer(resp.var ~ cont.var:cat.var + (1 | rand.eff),
             data = sample.data, family = poisson)

And with jtools we just use the interact_plot function like this:

library(jtools)
interact_plot(fit, pred = cont.var, modx = cat.var)

The result:

By default it plots on the response scale, but you can have it plotted on the linear scale with the outcome.scale = "link" argument (default is "response").




回答3:


The effects package has support for lme4 models, and should be able to do what you want.

effects: Effect Displays for Linear, Generalized Linear, and Other Models

Graphical and tabular effect displays, e.g., of interactions, for various statistical models with linear predictors.

It also comes with two slightly outdated papers (you can think of them as vignettes).



来源:https://stackoverflow.com/questions/10457756/r-interaction-plot-with-a-continuous-and-a-categorical-variable-for-a-glmm-lme

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!