pytorch简单框架

泄露秘密 提交于 2019-11-29 16:44:54

网络搭建:

mynn.py:

import torchfrom torch import nnclass mynn(nn.Module):    def __init__(self):        super(mynn, self).__init__()        self.layer1 = nn.Sequential(            nn.Linear(3520, 4096), nn.BatchNorm1d(4096), nn.ReLU(True)        )        self.layer2 = nn.Sequential(            nn.Linear(4096, 4096), nn.BatchNorm1d(4096), nn.ReLU(True)        )        self.layer3 = nn.Sequential(            nn.Linear(4096, 4096), nn.BatchNorm1d(4096), nn.ReLU(True)        )        self.layer4 = nn.Sequential(            nn.Linear(4096, 4096), nn.BatchNorm1d(4096), nn.ReLU(True)        )        self.layer5 = nn.Sequential(            nn.Linear(4096, 3072), nn.BatchNorm1d(3072), nn.ReLU(True)        )        self.layer6 = nn.Sequential(            nn.Linear(3072, 2048), nn.BatchNorm1d(2048), nn.ReLU(True)        )        self.layer7 = nn.Sequential(            nn.Linear(2048, 1024), nn.BatchNorm1d(1024), nn.ReLU(True)        )        self.layer8 = nn.Sequential(            nn.Linear(1024, 256), nn.BatchNorm1d(256), nn.ReLU(True)        )        self.layer9 = nn.Sequential(            nn.Linear(256, 64), nn.BatchNorm1d(64), nn.ReLU(True)        )        self.layer10 = nn.Sequential(            nn.Linear(64, 32), nn.BatchNorm1d(32), nn.ReLU(True)        )        self.layer11 = nn.Sequential(            nn.Linear(32, 3)        )    def forward(self, x):        x = self.layer1(x)        x = self.layer2(x)        x = self.layer3(x)        x = self.layer4(x)        x = self.layer5(x)        x = self.layer6(x)        x = self.layer7(x)        x = self.layer8(x)        x = self.layer9(x)        x = self.layer10(x)        x = self.layer11(x)        return xDataset重定义:mydataset.py
import osfrom torch.utils import dataimport numpy as npfrom astropy.io import fitsfrom torchvision import transforms as Tfrom PIL import Imageimport pandas as pdclass mydataset(data.Dataset):    def __init__(self,csv_file,root_dir=None,transform=None):        self.landmarks_frame=np.loadtxt(open(csv_file,"rb"),delimiter=",")             #landmarks_frame是一个numpy矩阵        self.root_dir=root_dir        self.transform=transform    def __len__(self):        return len(self.landmarks_frame)    def __getitem__(self, idx):        lfit=self.landmarks_frame[idx,:]        lable=lfit[len(lfit)-1]        datafit=lfit[0:(len(lfit)-1)]        return lable,datafit主程序:main.py
import torchfrom torch import nn, optimfrom torchvision import datasets, transformsfrom torch.autograd import Variable#from models import Mynet, my_AlexNet, my_VGGfrom sdata import mydatasetimport timeimport numpy as npfrom model import  mynnif __name__ == '__main__':  #如果Dataloader开启num_workers > 0  必须要在'__main__'下才能消除报错    data_train = mydataset.mydataset(csv_file="G:\\DATA\\train.csv",root_dir=None,transform=None)    #data_test = mydataset(test=True)    data_test = mydataset.mydataset(csv_file="G:\\DATA\\test.csv", root_dir=None, transform=None)    data_loader_train = torch.utils.data.DataLoader(dataset=data_train,                                                    batch_size=256,                                                    shuffle=True,                                                    num_workers=0,                                                    pin_memory=True)    data_loader_test = torch.utils.data.DataLoader(dataset=data_test,                                                    batch_size=256,                                                    shuffle=True,                                                    num_workers=0,                                                    pin_memory=True)    print("**dataloader done**")    model = mynn.mynn()    if torch.cuda.is_available():        #model = model.cuda()        model.to(torch.device('cuda'))    #损失函数    criterion = nn.CrossEntropyLoss()    #optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)    #优化算法    optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=1e-4)    n_epochs = 1000    global_train_acc = []    s_time = time.time()    for epoch in range(n_epochs):        running_loss = 0.0        running_correct = 0.0        print('Epoch {}/{}'.format(epoch, n_epochs))        for label,datafit in data_loader_train:            x_train, y_train = datafit,label            #x_train, y_train = Variable(x_train.cuda()), Variable(y_train.cuda())            x_train, y_train = x_train.to(torch.device('cuda')), y_train.to(torch.device('cuda'))            x_train=x_train.float()            y_train=y_train.long()            #x_train, y_train = Variable(x_train), Variable(y_train)            outputs = model(x_train)            _, pred = torch.max(outputs.data, 1)            optimizer.zero_grad()            loss = criterion(outputs, y_train)            loss.backward()            optimizer.step()            running_loss += loss.item()            running_correct += torch.sum(pred == y_train.data)        testing_correct = 0.0        for label,datafit in data_loader_test:            x_test, y_test = datafit,label            x_test=x_test.float()            y_test=y_test.long()            x_test, y_test = Variable(x_test.cuda()), Variable(y_test.cuda())            # x_test, y_test = Variable(x_test), Variable(y_test)            outputs = model(x_test)            _, pred = torch.max(outputs.data, 1)            testing_correct += torch.sum(pred == y_test.data)        print('Loss is:{:.4f}, Train Accuracy is:{:.4f}%, Test Accuracy '              'is:{:.4f}'.format(running_loss / len(data_train),                                 100 * running_correct / len(data_train),                                 100 * testing_correct / len(data_test)))    e_time = time.time()    print('time_run is :', e_time - s_time)    print('*******done******')将天文数据写入csv中:main.py
# -*- coding: utf-8 -*-"""Spyder EditorThis is a temporary script file."""import matplotlib.pyplot as pltfrom astropy.io import fitsimport osimport matplotlibmatplotlib.use('Qt5Agg')from astropy.io import fitsimport numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn import svmfrom sklearn.decomposition import PCAdef getData(fitPath,cla):    fileList=[]                 #所有.fit文件    files=os.listdir(fitPath)      #返回一个列表,其中包含在目录条目的名称    y=[]    for f in files:        if os.path.isfile(fitPath+'/'+f) and f[-4:-1]==".fi":            fileList.append(fitPath+'/'+f)  #添加文件    len=90000    x=np.ones(3521)    num=1    for path in fileList:        f = fits.open(path)        header = f[0].header  # fit文件中的各种标识        SPEC_CLN = header['SPEC_CLN']        SN_G = header['SN_G']        NAXIS1 = header['NAXIS1']  # 光谱数据维度        COEFF0 = header['COEFF0']        COEFF1 = header['COEFF1']        wave = np.ones(NAXIS1)  # 光谱图像中的横坐标        for i in range(NAXIS1):            wave[i] = i        logwavelength = COEFF0 + wave * COEFF1        for i in range(NAXIS1):            wave[i] = 10 ** logwavelength[i]        min=0        for i in range(NAXIS1-1):            if wave[i]<=4000 and wave[i+1]>=4000:                min=i        spec = f[0].data[0, :]  # 光谱数据  fit中的第一行数据        spec=spec[min:min+3521]        spec=np.array(spec)        spec[3520]=cla        if num==1:            x=spec            num=2        else:            x=np.row_stack((x,spec))    #np.savetxt(csvPath,x, delimiter=',')    return xif __name__ == '__main__':    x=getData("G:\DATA\STAR",0)    x_train,x_test=train_test_split(x,test_size=0.1 ,random_state=0)    y=getData("G:\DATA\QSO",1)    y_train, y_test = train_test_split(y, test_size=0.1, random_state=0)    x_train = np.row_stack((x_train,y_train))    x_test=np.row_stack((x_test,y_test))    z=getData("G:\DATA\GALAXY",2)    z_train, z_test = train_test_split(z, test_size=0.1, random_state=0)    x_train=np.row_stack((x_train,z_train))    x_test = np.row_stack((x_test,z_test))    np.savetxt("G:\\DATA\\train.csv",x_train, delimiter=',')    np.savetxt("G:\\DATA\\test.csv", x_test, delimiter=',')
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!