输入一个字符串,按字典序打印出该字符串中字符的所有排列。例如输入字符串 abc,则打印出由字符 a, b, c 所能排列出来的所有字符串 abc, acb, bac, bca, cab 和 cba。
一般思路:
正常人的思维是,固定第一个字符,然后依次将后面的字符串与前面的交换,那么排列的个数就是除了第一个字符以外,其他字符的排列个数+1。
也就是固定一个字符串之后,之后再将问题变小,只需求出后面子串的排列个数就可以得出结果,当然第一时间想到的就是递归的算法了。
下面这张图很清楚的给出了递归的过程:
固定第一个位置,调换后面的位置。
很明显,递归的出口,就是只剩一个字符的时候,递归的循环过程,就是从每个子串的第二个字符开始依次与第一个字符交换,然后继续处理子串。
还有一个问题要注意,就是如果字符串中有重复的字符串。
由于全排列就是从第一个数字起,每个数分别与它后面的数字交换,我们先尝试加个这样的判断——如果一个数与后面的数字相同那么这两个数就不交换 了。例如 abb,第一个数与后面两个数交换得 bab,bba。然后 abb 中第二个数和第三个数相同,就不用交换了。但是对 bab,第二个数和第三个数不同,则需要交换,得到 bba。由于这里的bba和开始第一个数与第三个数交换的结果相同了,因此这个方法不行。
换种思维,对abb,第一个数a与第二个数b交换得到bab,然后考虑第一个数与第三个数交换,此时由于第三个数等于第二个数,所以第一个数就不再用与第三个数交换了。再考虑bab,它的第二个数与第三个数交换可以解决bba。此时全排列生成完毕!
这样,我们得到在全排列中去掉重复的规则:
去重的全排列就是从第一个数字起,每个数分别与它后面非重复出现的数字交换。
/**
* 1、递归算法
*
* 解析:http://www.cnblogs.com/cxjchen/p/3932949.html (感谢该文作者!)
*
* 对于无重复值的情况
*
* 固定第一个字符,递归取得首位后面的各种字符串组合;
* 再把第一个字符与后面每一个字符交换,并同样递归获得首位后面的字符串组合; *递归的出口,就是只剩一个字符的时候,递归的循环过程,就是从每个子串的第二个字符开始依次与第一个字符交换,然后继续处理子串。
*
* 假如有重复值呢?
* *由于全排列就是从第一个数字起,每个数分别与它后面的数字交换,我们先尝试加个这样的判断——如果一个数与后面的数字相同那么这两个数就不交换了。
* 例如abb,第一个数与后面两个数交换得bab,bba。然后abb中第二个数和第三个数相同,就不用交换了。
* 但是对bab,第二个数和第三个数不 同,则需要交换,得到bba。
* 由于这里的bba和开始第一个数与第三个数交换的结果相同了,因此这个方法不行。
*
* 换种思维,对abb,第一个数a与第二个数b交换得到bab,然后考虑第一个数与第三个数交换,此时由于第三个数等于第二个数,
* 所以第一个数就不再用与第三个数交换了。再考虑bab,它的第二个数与第三个数交换可以解决bba。此时全排列生成完毕!
*
*
* @param str
* @return
*/
public ArrayList<String> Permutation(String str){
ArrayList<String> list = new ArrayList<String>();
if(str!=null && str.length()>0){
PermutationHelper(str.toCharArray(),0,list);
Collections.sort(list);
}
return list;
}
private void PermutationHelper(char[] chars,int i,ArrayList<String> list){
if(i == chars.length-1){
list.add(String.valueOf(chars));
}else{
Set<Character> charSet = new HashSet<Character>();
for(int j=i;j<chars.length;++j){
if(j==i || !charSet.contains(chars[j])){
charSet.add(chars[j]);
swap(chars,i,j);
PermutationHelper(chars,i+1,list);
swap(chars,j,i);
}
}
}
}
private void swap(char[] cs,int i,int j){
char temp = cs[i];
cs[i] = cs[j];
cs[j] = temp;
}