235. Lowest Common Ancestor of a Binary Search Tree

﹥>﹥吖頭↗ 提交于 2019-11-29 03:46:26

Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

Given binary search tree:  root = [6,2,8,0,4,7,9,null,null,3,5]

 

Example 1:

Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8  Output: 6  Explanation: The LCA of nodes 2 and 8 is 6.  

Example 2:

Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4  Output: 2  Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.  

 

Note:

  • All of the nodes' values will be unique.
  • p and q are different and both values will exist in the BST.
    /**   * Definition for a binary tree node.   * public class TreeNode {   *     int val;   *     TreeNode left;   *     TreeNode right;   *     TreeNode(int x) { val = x; }   * }   */  public class Solution {      public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {          if(root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);          if(root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);          return root;      }  }

    这个解法简直钛蚌

  • 先看recursive。从根节点出发,分别去搜索两个节点,但这里搜索不用瞎搜索,需要利用BST的性质,比较p->val,q->val和root->val的关系,决定往左边搜还是右边搜。如果root->val>p->val同时root->val>q->val,说明p,q都在root的左侧,因此把root=root->left;如果root->val< p->val同时root->val < q->val,说明p,q都在root的右侧,因此把root=root->right;如果root->val>p->val同时root->val< q->val,或root->val< p->val同时root->val> q->val说明p,q在root的两侧,说明root就是LCA.
    ————————————————
    版权声明:本文为CSDN博主「xinqrs01」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/xinqrs01/article/details/54999271

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!