Change Dendrogram leaves

与世无争的帅哥 提交于 2019-11-29 00:13:56

A while ago, Joris Meys kindly provided me with this snippet of code that changes the color of leaves. Modify it to reflect your attributes.

clusDendro <- as.dendrogram(Clustering)
labelColors <- c("red", "blue", "darkgreen", "darkgrey", "purple")

## function to get colorlabels
colLab <- function(n) {
   if(is.leaf(n)) {
       a <- attributes(n)
       # clusMember - a vector designating leaf grouping
       # labelColors - a vector of colors for the above grouping
       labCol <- labelColors[clusMember[which(names(clusMember) == a$label)]]
       attr(n, "nodePar") <- c(a$nodePar, lab.col = labCol)
   }
   n
}

## Graph
clusDendro <- dendrapply(clusDendro, colLab)
op <- par(mar = par("mar") + c(0,0,0,2))
plot(clusDendro,
     main = "Major title",
     horiz = T, type = "triangle", center = T)

par(op)

Here is a solution for this question using a new package called "dendextend", built exactly for this sort of thing.

You can see many examples in the presentations and vignettes of the package, in the "usage" section in the following URL: https://github.com/talgalili/dendextend

Here is the solution for this question:

# define dendrogram object to play with:
dend <- as.dendrogram(hclust(dist(USArrests[1:3,]), "ave"))
# loading the package
install.packages('dendextend') # it is now on CRAN
library(dendextend)# let's add some color:
labels_colors(dend) <- 2:4
labels_colors(dend)
plot(dend)

It is not clear what you want to use it for, but I often need to identify a branch in a dendrogram. I've hacked the rect.hclust method to add a density and label input.

You would call it like this:


k <- 3 # number of branches to identify
labels.to.identify <- c('1','2','3')
required.density <- 10 # the density of shading lines, in lines per inch 
rect.hclust.nice(tree, k, labels=labels.to.identify, density=density.required)

Here is the function



rect.hclust.nice = function (tree, k = NULL, which = NULL, x = NULL, h = NULL, border = 2, 
    cluster = NULL,  density = NULL,labels = NULL, ...) 
{
    if (length(h) > 1 | length(k) > 1) 
        stop("'k' and 'h' must be a scalar")
    if (!is.null(h)) {
        if (!is.null(k)) 
            stop("specify exactly one of 'k' and 'h'")
        k <- min(which(rev(tree$height) < h))
        k <- max(k, 2)
    }
    else if (is.null(k)) 
        stop("specify exactly one of 'k' and 'h'")
    if (k < 2 | k > length(tree$height)) 
        stop(gettextf("k must be between 2 and %d", length(tree$height)), 
            domain = NA)
    if (is.null(cluster)) 
        cluster <- cutree(tree, k = k)
    clustab <- table(cluster)[unique(cluster[tree$order])]
    m <- c(0, cumsum(clustab))
    if (!is.null(x)) {
        if (!is.null(which)) 
            stop("specify exactly one of 'which' and 'x'")
        which <- x
        for (n in 1L:length(x)) which[n] <- max(which(m < x[n]))
    }
    else if (is.null(which)) 
        which <- 1L:k
    if (any(which > k)) 
        stop(gettextf("all elements of 'which' must be between 1 and %d", 
            k), domain = NA)
    border <- rep(border, length.out = length(which))
    labels <- rep(labels, length.out = length(which))
    retval <- list()
    for (n in 1L:length(which)) {
        rect(m[which[n]] + 0.66, par("usr")[3L], m[which[n] + 
            1] + 0.33, mean(rev(tree$height)[(k - 1):k]), border = border[n], col = border[n], density = density, ...)
        text((m[which[n]] + m[which[n] + 1]+1)/2, grconvertY(grconvertY(par("usr")[3L],"user","ndc")+0.02,"ndc","user"),labels[n])
        retval[[n]] <- which(cluster == as.integer(names(clustab)[which[n]]))
    }
    invisible(retval)
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!