数学建模------线性规划

ぐ巨炮叔叔 提交于 2019-11-28 22:29:58

线性规划算法

一、一般的线性规划问题

问题:求解下列线性规划问题
max z = 2x1 + 3x2 − 5x3
s.t. x1 + x2 + x3 = 7
2x1 −5x2 + x3 ≥10
x1 + 3x2 + x3 ≤12
x1, x2 , x3 ≥ 0
 
python解答(代码实现)
 1 import numpy as np
 2 from scipy import optimize    #求线性规划用到的函数
 3 def line_progress():          #不等式中的大于等于号要换成小于等于号
 4     c = np.array([2,3,-5])    #所求的最终式子的系数(求最大值,要在后面求值时加负号)
 5     A = np.array([[-2,5,-1],[1,3,1]])      #不等式中的系数
 6     b = np.array([-10,12])    #不等式中的约束值(即右边的值)
 7     Aeq = np.array([[1,1,1]]) #不等式中的变量
 8     beq = np.array([7])
 9     line_result = optimize.linprog(-c,A,b,Aeq,beq)#优化求解
10     if line_result.success:
11         print("线性规划最小值的变量:")
12         print(line_result.x)
13         print("线性规划最小值:")
14         print(line_result.fun)
15         print("线性规划最大值:")
16         print(-line_result.fun)
17     else:
18         print("找不到线性规划最小值")
19 
20 if __name__=='__main__':
21     line_progress()

结果显示

 

MATLAB(代码实现)

c=[2;3;-5];
a=[-2,5,-1;1,3,1]; b=[-10;12];
aeq=[1,1,1];
beq=7;
x=linprog(-c,a,b,aeq,beq,zeros(3,1))
value=c'*x

 

二、指派问题(选用匈牙利算法)

算法:如果系数矩阵C = (cij) 一行(或一列)中每一元素都加上或减去同一个数,得到一个新矩阵 B = (bij) ,则以C 或 B 为系数矩阵的
指派问题具有相同的最优指派。(一般是每一行或每一列该减去该行(该列)最小的的一个数)
上图最明了

 

解答最优指派

1-->2    2-->1   3-->3     4-->4

 

代码实现(其实小编也不懂,搬别人的过来的)有想了解的可以参照下面的链接

https://blog.csdn.net/jingshushu1995/article/details/80411325

import itertools
import numpy as np
from numpy import random
from scipy.optimize import linear_sum_assignment
 
 
# 任务分配类
class TaskAssignment:
 
    # 类初始化,需要输入参数有任务矩阵以及分配方式,其中分配方式有两种,全排列方法all_permutation或匈牙利方法Hungary。
    def __init__(self, task_matrix, mode):
        self.task_matrix = task_matrix
        self.mode = mode
        if mode == 'all_permutation':
            self.min_cost, self.best_solution = self.all_permutation(task_matrix)
        if mode == 'Hungary':
            self.min_cost, self.best_solution = self.Hungary(task_matrix)
 
    # 全排列方法
    def all_permutation(self, task_matrix):
        number_of_choice = len(task_matrix)
        solutions = []
        values = []
        for each_solution in itertools.permutations(range(number_of_choice)):
            each_solution = list(each_solution)
            solution = []
            value = 0
            for i in range(len(task_matrix)):
                value += task_matrix[i][each_solution[i]]
                solution.append(task_matrix[i][each_solution[i]])
            values.append(value)
            solutions.append(solution)
        min_cost = np.min(values)
        best_solution = solutions[values.index(min_cost)]
        return min_cost, best_solution
 
    # 匈牙利方法
    def Hungary(self, task_matrix):
        b = task_matrix.copy()
        # 行和列减0
        for i in range(len(b)):
            row_min = np.min(b[i])
            for j in range(len(b[i])):
                b[i][j] -= row_min
        for i in range(len(b[0])):
            col_min = np.min(b[:, i])
            for j in range(len(b)):
                b[j][i] -= col_min
        line_count = 0
        # 线数目小于矩阵长度时,进行循环
        while (line_count < len(b)):
            line_count = 0
            row_zero_count = []
            col_zero_count = []
            for i in range(len(b)):
                row_zero_count.append(np.sum(b[i] == 0))
            for i in range(len(b[0])):
                col_zero_count.append((np.sum(b[:, i] == 0)))
            # 划线的顺序(分行或列)
            line_order = []
            row_or_col = []
            for i in range(len(b[0]), 0, -1):
                while (i in row_zero_count):
                    line_order.append(row_zero_count.index(i))
                    row_or_col.append(0)
                    row_zero_count[row_zero_count.index(i)] = 0
                while (i in col_zero_count):
                    line_order.append(col_zero_count.index(i))
                    row_or_col.append(1)
                    col_zero_count[col_zero_count.index(i)] = 0
            # 画线覆盖0,并得到行减最小值,列加最小值后的矩阵
            delete_count_of_row = []
            delete_count_of_rol = []
            row_and_col = [i for i in range(len(b))]
            for i in range(len(line_order)):
                if row_or_col[i] == 0:
                    delete_count_of_row.append(line_order[i])
                else:
                    delete_count_of_rol.append(line_order[i])
                c = np.delete(b, delete_count_of_row, axis=0)
                c = np.delete(c, delete_count_of_rol, axis=1)
                line_count = len(delete_count_of_row) + len(delete_count_of_rol)
                # 线数目等于矩阵长度时,跳出
                if line_count == len(b):
                    break
                # 判断是否画线覆盖所有0,若覆盖,进行加减操作
                if 0 not in c:
                    row_sub = list(set(row_and_col) - set(delete_count_of_row))
                    min_value = np.min(c)
                    for i in row_sub:
                        b[i] = b[i] - min_value
                    for i in delete_count_of_rol:
                        b[:, i] = b[:, i] + min_value
                    break
        row_ind, col_ind = linear_sum_assignment(b)
        min_cost = task_matrix[row_ind, col_ind].sum()
        best_solution = list(task_matrix[row_ind, col_ind])
        return min_cost, best_solution
 
 
# 生成开销矩阵
rd = random.RandomState(10000)
task_matrix = rd.randint(0, 100, size=(5, 5))
# 用全排列方法实现任务分配
ass_by_per = TaskAssignment(task_matrix, 'all_permutation')
# 用匈牙利方法实现任务分配
ass_by_Hun = TaskAssignment(task_matrix, 'Hungary')
print('cost matrix = ', '\n', task_matrix)
print('全排列方法任务分配:')
print('min cost = ', ass_by_per.min_cost)
print('best solution = ', ass_by_per.best_solution)
print('匈牙利方法任务分配:')
print('min cost = ', ass_by_Hun.min_cost)
print('best solution = ', ass_by_Hun.best_solution)

 

 

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!