malloc & placement new vs. new

蹲街弑〆低调 提交于 2019-11-28 16:59:47

If you do not want to get your memory initialized by implicit constructor calls, and just need an assured memory allocation for placement new then it is perfectly fine to use malloc and free instead of new[] and delete[].

The compelling reasons of using new over malloc is that new provides implicit initialization through constructor calls, saving you additional memset or related function calls post an malloc And that for new you do not need to check for NULL after every allocation, just enclosing exception handlers will do the job saving you redundant error checking unlike malloc.
These both compelling reasons do not apply to your usage.

which one is performance efficient can only be determined by profiling, there is nothing wrong in the approach you have now. On a side note I don't see a compelling reason as to why use malloc over new[] either.

I'm out for a compelling reason.

It depends on how you define "compelling". Many of the arguments you have thus far rejected are certainly compelling to most C++ programmers, as your suggestion is not the standard way to allocate naked arrays in C++.

The simple fact is this: yes, you absolutely can do things the way you describe. There is no reason that what you are describing will not function.

But then again, you can have virtual functions in C. You can implement classes and inheritance in plain C, if you put the time and effort into it. Those are entirely functional as well.

Therefore, what matters is not whether something can work. But more on what the costs are. It's much more error prone to implement inheritance and virtual functions in C than C++. There are multiple ways to implement it in C, which leads to incompatible implementations. Whereas, because they're first-class language features of C++, it's highly unlikely that someone would manually implement what the language offers. Thus, everyone's inheritance and virtual functions can cooperate with the rules of C++.

The same goes for this. So what are the gains and the losses from manual malloc/free array management?

I can't say that any of what I'm about to say constitutes a "compelling reason" for you. I rather doubt it will, since you seem to have made up your mind. But for the record:

Performance

You claim the following:

As far as I can tell the latter is much more efficient than the former (since you don't initialize memory to some non-random value/call default constructors unnecessarily), and the only difference really is the fact that one you clean up with:

This statement suggests that the efficiency gain is primarily in the construction of the objects in question. That is, which constructors are called. The statement presupposes that you don't want to call the default constructor; that you use a default constructor just to create the array, then use the real initialization function to put the actual data into the object.

Well... what if that's not what you want to do? What if what you want to do is create an empty array, one that is default constructed? In this case, this advantage disappears entirely.

Fragility

Let's assume that each object in the array needs to have a specialized constructor or something called on it, such that initializing the array requires this sort of thing. But consider your destruction code:

for (int i=0;i<MY_ARRAY_SIZE;++i) my_array[i].~T();

For a simple case, this is fine. You have a macro or const variable that says how many objects you have. And you loop over each element to destroy the data. That's great for a simple example.

Now consider a real application, not an example. How many different places will you be creating an array in? Dozens? Hundreds? Each and every one will need to have its own for loop for initializing the array. Each and every one will need to have its own for loop for destroying the array.

Mis-type this even once, and you can corrupt memory. Or not delete something. Or any number of other horrible things.

And here's an important question: for a given array, where do you keep the size? Do you know how many items you allocated for every array that you create? Each array will probably have its own way of knowing how many items it stores. So each destructor loop will need to fetch this data properly. If it gets it wrong... boom.

And then we have exception safety, which is a whole new can of worms. If one of the constructors throws an exception, the previously constructed objects need to be destructed. Your code doesn't do that; it's not exception-safe.

Now, consider the alternative:

delete[] my_array;

This can't fail. It will always destroy every element. It tracks the size of the array, and it's exception-safe. So it is guaranteed to work. It can't not work (as long as you allocated it with new[]).

Of course, you could say that you could wrap the array in an object. That makes sense. You might even template the object on the type elements of the array. That way, all the desturctor code is the same. The size is contained in the object. And maybe, just maybe, you realize that the user should have some control over the particular way the memory is allocated, so that it's not just malloc/free.

Congratulations: you just re-invented std::vector.

Which is why many C++ programmers don't even type new[] anymore.

Flexibility

Your code uses malloc/free. But let's say I'm doing some profiling. And I realize that malloc/free for certain frequently created types is just too expensive. I create a special memory manager for them. But how to hook all of the array allocations to them?

Well, I have to search the codebase for any location where you create/destroy arrays of these types. And then I have to change their memory allocators accordingly. And then I have to continuously watch the codebase so that someone else doesn't change those allocators back or introduce new array code that uses different allocators.

If I were instead using new[]/delete[], I could use operator overloading. I simply provide an overload for operators new[] and delete[] for those types. No code has to change. It's much more difficult for someone to circumvent these overloads; they have to actively try to. And so forth.

So I get greater flexibility and reasonable assurance that my allocators will be used where they should be used.

Readability

Consider this:

my_object *my_array = new my_object[10];
for (int i=0; i<MY_ARRAY_SIZE; ++i)
  my_array[i]=my_object(i);

//... Do stuff with the array

delete [] my_array;

Compare it to this:

my_object *my_array = (my_object *)malloc(sizeof(my_object) * MY_ARRAY_SIZE);
if(my_object==NULL)
  throw MEMORY_ERROR;

int i;
try
{
    for(i=0; i<MY_ARRAY_SIZE; ++i)
      new(my_array+i) my_object(i);
}
catch(...)  //Exception safety.
{
    for(i; i>0; --i)  //The i-th object was not successfully constructed
        my_array[i-1].~T();
    throw;
}

//... Do stuff with the array

for(int i=MY_ARRAY_SIZE; i>=0; --i)
  my_array[i].~T();
free(my_array);

Objectively speaking, which one of these is easier to read and understand what's going on?

Just look at this statement: (my_object *)malloc(sizeof(my_object) * MY_ARRAY_SIZE). This is a very low level thing. You're not allocating an array of anything; you're allocating a hunk of memory. You have to manually compute the size of the hunk of memory to match the size of the object * the number of objects you want. It even features a cast.

By contrast, new my_object[10] tells the story. new is the C++ keyword for "create instances of types". my_object[10] is a 10 element array of my_object type. It's simple, obvious, and intuitive. There's no casting, no computing of byte sizes, nothing.

The malloc method requires learning how to use malloc idiomatically. The new method requires just understanding how new works. It's much less verbose and much more obvious what's going on.

Furthermore, after the malloc statement, you do not in fact have an array of objects. malloc simply returns a block of memory that you have told the C++ compiler to pretend is a pointer to an object (with a cast). It isn't an array of objects, because objects in C++ have lifetimes. And an object's lifetime does not begin until it is constructed. Nothing in that memory has had a constructor called on it yet, and therefore there are no living objects in it.

my_array at that point is not an array; it's just a block of memory. It doesn't become an array of my_objects until you construct them in the next step. This is incredibly unintuitive to a new programmer; it takes a seasoned C++ hand (one who probably learned from C) to know that those aren't live objects and should be treated with care. The pointer does not yet behave like a proper my_object*, because it doesn't point to any my_objects yet.

By contrast, you do have living objects in the new[] case. The objects have been constructed; they are live and fully-formed. You can use this pointer just like any other my_object*.

Fin

None of the above says that this mechanism isn't potentially useful in the right circumstances. But it's one thing to acknowledge the utility of something in certain circumstances. It's quite another to say that it should be the default way of doing things.

I would say neither.

The best way to do it would be:

std::vector<my_object>   my_array;
my_array.reserve(MY_ARRAY_SIZE);

for (int i=0;i<MY_ARRAY_SIZE;++i)
{    my_array.push_back(my_object(i));
}

This is because internally vector is probably doing the placement new for you. It also managing all the other problems associated with memory management that you are not taking into account.

You've reimplemented new[]/delete[] here, and what you have written is pretty common in developing specialized allocators.

The overhead of calling simple constructors will take little time compared the allocation. It's not necessarily 'much more efficient' -- it depends on the complexity of the default constructor, and of operator=.

One nice thing that has not been mentioned yet is that the array's size is known by new[]/delete[]. delete[] just does the right and destructs all elements when asked. Dragging an additional variable (or three) around so you exactly how to destroy the array is a pain. A dedicated collection type would be a fine alternative, however.

new[]/delete[] are preferable for convenience. They introduce little overhead, and could save you from a lot of silly errors. Are you compelled enough to take away this functionality and use a collection/container everywhere to support your custom construction? I've implemented this allocator -- the real mess is creating functors for all the construction variations you need in practice. At any rate, you often have a more exact execution at the expense of a program which is often more difficult to maintain than the idioms everybody knows.

IMHO there both ugly, it's better to use vectors. Just make sure to allocate the space in advance for performance.

Either:

std::vector<my_object> my_array(MY_ARRAY_SIZE);

If you want to initialize with a default value for all entries.

my_object basic;
std::vector<my_object> my_array(MY_ARRAY_SIZE, basic);

Or if you don't want to construct the objects but do want to reserve the space:

std::vector<my_object> my_array;
my_array.reserve(MY_ARRAY_SIZE);

Then if you need to access it as a C-Style pointer array just (just make sure you don't add stuff while keeping the old pointer but you couldn't do that with regular c-style arrays anyway.)

my_object* carray = &my_array[0];      
my_object* carray = &my_array.front(); // Or the C++ way

Access individual elements:

my_object value = my_array[i];    // The non-safe c-like faster way
my_object value = my_array.at(i); // With bounds checking, throws range exception

Typedef for pretty:

typedef std::vector<my_object> object_vect;

Pass them around functions with references:

void some_function(const object_vect& my_array);

EDIT: IN C++11 there is also std::array. The problem with it though is it's size is done via a template so you can't make different sized ones at runtime and you cant pass it into functions unless they are expecting that exact same size (or are template functions themselves). But it can be useful for things like buffers.

std::array<int, 1024> my_array;

EDIT2: Also in C++11 there is a new emplace_back as an alternative to push_back. This basically allows you to 'move' your object (or construct your object directly in the vector) and saves you a copy.

std::vector<SomeClass> v;
SomeClass bob {"Bob", "Ross", 10.34f};
v.emplace_back(bob);
v.emplace_back("Another", "One", 111.0f); // <- Note this doesn't work with initialization lists ☹

Oh well, I was thinking that given the number of answers there would be no reason to step in... but I guess I am drawn in as the others. Let's go

  1. Why your solution is broken
  2. C++11 new facilities for handling raw memory
  3. Simpler way to get this done
  4. Advices

1. Why your solution is broken

First, the two snippets you presented are not equivalent. new[] just works, yours fails horribly in the presence of Exceptions.

What new[] does under the cover is that it keeps track of the number of objects that were constructed, so that if an exception occurs during say the 3rd constructor call it properly calls the destructor for the 2 already constructed objects.

Your solution however fails horribly:

  • either you don't handle exceptions at all (and leak horribly)
  • or you just try to call the destructors on the whole array even though it's half built (likely crashing, but who knows with undefined behavior)

So the two are clearly not equivalent. Yours is broken

2. C++11 new facilities for handling raw memory

In C++11, the comittee members have realized how much we liked fiddling with raw memory and they have introduced facilities to help us doing so more efficiently, and more safely.

Check cppreference's <memory> brief. This example shows off the new goodies (*):

#include <iostream>
#include <string>
#include <memory>
#include <algorithm>

int main()
{
    const std::string s[] = {"This", "is", "a", "test", "."};
    std::string* p = std::get_temporary_buffer<std::string>(5).first;

    std::copy(std::begin(s), std::end(s),
              std::raw_storage_iterator<std::string*, std::string>(p));

    for(std::string* i = p; i!=p+5; ++i) {
        std::cout << *i << '\n';
        i->~basic_string<char>();
    }
    std::return_temporary_buffer(p);
}

Note that get_temporary_buffer is no-throw, it returns the number of elements for which memory has actually been allocated as a second member of the pair (thus the .first to get the pointer).

(*) Or perhaps not so new as MooingDuck remarked.

3. Simpler way to get this done

As far as I am concered, what you really seem to be asking for is a kind of typed memory pool, where some emplacements could not have been initialized.

Do you know about boost::optional ?

It is basically an area of raw memory that can fit one item of a given type (template parameter) but defaults with having nothing in instead. It has a similar interface to a pointer and let you query whether or not the memory is actually occupied. Finally, using the In-Place Factories you can safely use it without copying objects if it is a concern.

Well, your use case really looks like a std::vector< boost::optional<T> > to me (or perhaps a deque?)

4. Advices

Finally, in case you really want to do it on your own, whether for learning or because no STL container really suits you, I do suggest you wrap this up in an object to avoid the code sprawling all over the place.

Don't forget: Don't Repeat Yourself!

With an object (templated) you can capture the essence of your design in one single place, and then reuse it everywhere.

And of course, why not take advantage of the new C++11 facilities while doing so :) ?

ddacot

You should use vectors.

Dogmatic or not, that is exactly what ALL the STL container do to allocate and initialize.

They use an allocator then allocates uninitialized space and initialize it by means of the container constructors.

If this (like many people use to say) "is not c++" how can be the standard library just be implemented like that?

If you just don't want to use malloc / free, you can allocate "bytes" with just new char[]

myobjet* pvext = reinterpret_cast<myobject*>(new char[sizeof(myobject)*vectsize]);
for(int i=0; i<vectsize; ++i) new(myobject+i)myobject(params);
...
for(int i=vectsize-1; i!=0u-1; --i) (myobject+i)->~myobject();
delete[] reinterpret_cast<char*>(myobject);

This lets you take advantage of the separation between initialization and allocation, still taking adwantage of the new allocation exception mechanism.

Note that, putting my first and last line into an myallocator<myobject> class and the second ands second-last into a myvector<myobject> class, we have ... just reimplemented std::vector<myobject, std::allocator<myobject> >

What you have shown here is actually the way to go when using a memory allocator different than the system general allocator - in that case you would allocate your memory using the allocator (alloc->malloc(sizeof(my_object))) and then use the placement new operator to initialize it. This has many advantages in efficient memory management and quite common in the standard template library.

If you are writing a class that mimics functionality of std::vector or needs control over memory allocation/object creation (insertion in array / deletion etc.) - that's the way to go. In this case, it's not a question of "not calling default constructor". It becomes a question of being able to "allocate raw memory, memmove old objects there and then create new objects at the olds' addresses", question of being able to use some form of realloc and so on. Unquestionably, custom allocation + placement new are way more flexible... I know, I'm a bit drunk, but std::vector is for sissies... About efficiency - one can write their own version of std::vector that will be AT LEAST as fast ( and most likely smaller, in terms of sizeof() ) with most used 80% of std::vector functionality in, probably, less than 3 hours.

my_object * my_array=new my_object [10];

This will be an array with objects.

my_object * my_array=(my_object *)malloc(sizeof(my_object)*MY_ARRAY_SIZE);

This will be an array the size of your objects, but they may be "broken". If your class has virtual funcitons for instance, then you won't be able to call those. Note that it's not just your member data that may be inconsistent, but the entire object is actully "broken" (in lack of a better word)

I'm not saying it's wrong to do the second one, just as long as you know this.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!