How to encrypt bytes using the TPM (Trusted Platform Module)

怎甘沉沦 提交于 2019-11-28 15:41:18

Primer

All that follows is about TPM 1.2. Keep in mind that Microsoft requires a TPM 2.0 for all future Windows versions. The 2.0 generation is fundamentally different to the 1.2

There is no one-line solution because of TPM design principles. Think of the TPM as a microcontroller with limited resources. It main design goal was to be cheap, while still secure. So the TPM was ripped of all logic which was not necessary for a secure operation. Thus a TPM is only working when you have at least some more or less fat software, issuing a lot of commands in the correct order. And those sequences of commands may get very complex. That's why TCG specified the TSS with a well defined API. If you would like to go the Java way, there is even an high level Java API. I'm not aware of an similar project for C# / .net

Development

In your case I'd suggest you look at IBM's software TPM.

In the package you will find 3 very usefull components:

  • a software TPM emulator
  • a lightweight tpm lib
  • some basic command line utilities

You don't necessarily need the software TPM emulator, you can also connect to the machine's HW TPM. However, you can intercept the issued commands and look at the responses, thus learning how they are assembled and how they correspond to the command specification.

High level

Prerequisites:

  1. TPM is activated
  2. TPM driver is loaded
  3. you have taken ownership of the TPM

In order to seal a blob, you need to do the following:

  1. create a key
  2. store the key-blob somewhere
  3. ensure that the key is loaded in the TPM
  4. seal the blob

To unseal you need to:

  1. obtain the key-blob
  2. load the key to the TPM
  3. unseal the sealed blob

You can store the key-blob in your data structure you use to store the protected bytes.

Most of the TPM commands you need are authorized ones. Therefore you need to establish authorization sessions where needed. AFAIR those are mostly OSAP sessions.

TPM commands

Currently I can't run a debug version, so I can't provide you with the exact sequence. So consider this an unordered list of commands you will have to use:

  • TPM_OSAP
  • TPM_CreateWrapKey
  • TPM_LoadKey2
  • TPM_Seal

If you want to read the current PCR values, too:

  • TPM_PCRRead
chandana

Trusted and Encrypted Keys

Trusted and Encrypted Keys are two new key types added to the existing kernel key ring service. Both of these new types are variable length symmetric keys, and in both cases all keys are created in the kernel, and user space sees, stores, and loads only encrypted blobs. Trusted Keys require the availability of a Trusted Platform Module (TPM) chip for greater security, while Encrypted Keys can be used on any system. All user level blobs, are displayed and loaded in hex ascii for convenience, and are integrity verified.

Trusted Keys use a TPM both to generate and to seal the keys. Keys are sealed under a 2048 bit RSA key in the TPM, and optionally sealed to specified PCR (integrity measurement) values, and only unsealed by the TPM, if PCRs and blob integrity verifications match. A loaded Trusted Key can be updated with new (future) PCR values, so keys are easily migrated to new pcr values, such as when the kernel and initramfs are updated. The same key can have many saved blobs under different PCR values, so multiple boots are easily supported.

By default, trusted keys are sealed under the SRK, which has the default authorization value (20 zeros). This can be set at takeownership time with the trouser's utility: tpm_takeownership -u -z.

Usage:
    keyctl add trusted name "new keylen [options]" ring
    keyctl add trusted name "load hex_blob [pcrlock=pcrnum]" ring
    keyctl update key "update [options]"
    keyctl print keyid

    options:
    keyhandle= ascii hex value of sealing key default 0x40000000 (SRK)
    keyauth=   ascii hex auth for sealing key default 0x00...i
        (40 ascii zeros)
    blobauth=  ascii hex auth for sealed data default 0x00...
        (40 ascii zeros)
    blobauth=  ascii hex auth for sealed data default 0x00...
        (40 ascii zeros)
    pcrinfo=   ascii hex of PCR_INFO or PCR_INFO_LONG (no default)
    pcrlock=   pcr number to be extended to "lock" blob
    migratable= 0|1 indicating permission to reseal to new PCR values,
                default 1 (resealing allowed)

keyctl print returns an ascii hex copy of the sealed key, which is in standard TPM_STORED_DATA format. The key length for new keys are always in bytes. Trusted Keys can be 32 - 128 bytes (256 - 1024 bits), the upper limit is to fit within the 2048 bit SRK (RSA) keylength, with all necessary structure/padding.

Encrypted keys do not depend on a TPM, and are faster, as they use AES for encryption/decryption. New keys are created from kernel generated random numbers, and are encrypted/decrypted using a specified 'master' key. The 'master' key can either be a trusted-key or user-key type. The main disadvantage of encrypted keys is that if they are not rooted in a trusted key, they are only as secure as the user key encrypting them. The master user key should therefore be loaded in as secure a way as possible, preferably early in boot.

The decrypted portion of encrypted keys can contain either a simple symmetric key or a more complex structure. The format of the more complex structure is application specific, which is identified by 'format'.

Usage:
    keyctl add encrypted name "new [format] key-type:master-key-name keylen"
        ring
    keyctl add encrypted name "load hex_blob" ring
    keyctl update keyid "update key-type:master-key-name"

format:= 'default | ecryptfs'
key-type:= 'trusted' | 'user'

Examples of trusted and encrypted key usage

Create and save a trusted key named "kmk" of length 32 bytes:

$ keyctl add trusted kmk "new 32" @u
440502848

$ keyctl show
Session Keyring
       -3 --alswrv    500   500  keyring: _ses
 97833714 --alswrv    500    -1   \_ keyring: _uid.500
440502848 --alswrv    500   500       \_ trusted: kmk

$ keyctl print 440502848
0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915
3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b
27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722
a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec
d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d
dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0
f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b
e4a8aea2b607ec96931e6f4d4fe563ba

$ keyctl pipe 440502848 > kmk.blob

Load a trusted key from the saved blob:

$ keyctl add trusted kmk "load `cat kmk.blob`" @u
268728824

$ keyctl print 268728824
0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915
3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b
27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722
a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec
d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d
dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0
f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b
e4a8aea2b607ec96931e6f4d4fe563ba

Reseal a trusted key under new pcr values:

$ keyctl update 268728824 "update pcrinfo=`cat pcr.blob`"
$ keyctl print 268728824
010100000000002c0002800093c35a09b70fff26e7a98ae786c641e678ec6ffb6b46d805
77c8a6377aed9d3219c6dfec4b23ffe3000001005d37d472ac8a44023fbb3d18583a4f73
d3a076c0858f6f1dcaa39ea0f119911ff03f5406df4f7f27f41da8d7194f45c9f4e00f2e
df449f266253aa3f52e55c53de147773e00f0f9aca86c64d94c95382265968c354c5eab4
9638c5ae99c89de1e0997242edfb0b501744e11ff9762dfd951cffd93227cc513384e7e6
e782c29435c7ec2edafaa2f4c1fe6e7a781b59549ff5296371b42133777dcc5b8b971610
94bc67ede19e43ddb9dc2baacad374a36feaf0314d700af0a65c164b7082401740e489c9
7ef6a24defe4846104209bf0c3eced7fa1a672ed5b125fc9d8cd88b476a658a4434644ef
df8ae9a178e9f83ba9f08d10fa47e4226b98b0702f06b3b8

The initial consumer of trusted keys is EVM, which at boot time needs a high quality symmetric key for HMAC protection of file metadata. The use of a trusted key provides strong guarantees that the EVM key has not been compromised by a user level problem, and when sealed to specific boot PCR values, protects against boot and offline attacks. Create and save an encrypted key "evm" using the above trusted key "kmk":

option 1: omitting 'format'

$ keyctl add encrypted evm "new trusted:kmk 32" @u
159771175

option 2: explicitly defining 'format' as 'default'

$ keyctl add encrypted evm "new default trusted:kmk 32" @u
159771175

$ keyctl print 159771175
default trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b3
82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0
24717c64 5972dcb82ab2dde83376d82b2e3c09ffc

$ keyctl pipe 159771175 > evm.blob

Load an encrypted key "evm" from saved blob:

$ keyctl add encrypted evm "load `cat evm.blob`" @u
831684262

$ keyctl print 831684262
default trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b3
82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0
24717c64 5972dcb82ab2dde83376d82b2e3c09ffc

Other uses for trusted and encrypted keys, such as for disk and file encryption are anticipated. In particular the new format 'ecryptfs' has been defined in in order to use encrypted keys to mount an eCryptfs filesystem. More details about the usage can be found in the file 'Documentation/security/keys-ecryptfs.txt'.

DCC

When it says

specifying the HMAC key

it does NOT mean provide the HMAC key - it means to "point to the HMAC key that you want to use".

TPMs can use a virtually unlimited number of HMAC keys, as is pointed out in the book. You have to tell the TPM which one to use.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!