问题
How to write a Program to find n primes after a given number? e.g. first 10 primes after 100, or first 25 primes after 1000. Edited: below is what I tried. I am getting output that way, but can we do it without using any primality-testing function?
#include<stdio.h>
#include<conio.h>
int isprime(int);
main()
{
int count=0,i;
for(i=100;1<2;i++)
{
if(isprime(i))
{
printf(\"%d\\n\",i);
count++;
if(count==5)
break;
}
}
getch();
}
int isprime(int i)
{
int c=0,n;
for(n=1;n<=i/2;n++)
{
if(i%n==0)
c++;
}
if(c==1)
return 1;
else
return 0;
}
回答1:
Sure. Read about the Sieve of Eratosthenes. Instead of checking for primality, you generate prime numbers.
回答2:
Implement the "offset" sieve of Eratosthenes. It is just two loops, one after another, inside another loop.
#include <math.h> // http://ideone.com/38MQlI
#include <stdlib.h>
#include <stdio.h>
typedef unsigned char bool; // quick'n'dirty
void primes (int n, int above)
{
double n0 = above / ( log(above) - log(log(above)) ); // ~ 11%..16% overhead
int i=0, j=0, k=0;
double top = n*log(above)*log(log(above)) + above; // approximated
int lim = sqrt(top), s2 = top - above + 1;
bool *core = (bool*) calloc( lim+1, sizeof(bool)); // all
bool *offset = (bool*) calloc( s2+1, sizeof(bool)); // zeroes
for( i=4; i<=lim; i+=2 ) core[i]=1; // `1` marks composites
for( i=above%2; i<=s2; i+=2 ) offset[i]=1; // (even numbers)
for( i=3; i<=lim; i+=2 )
if( !core[i] ) // `0` marks primes
{
k = 2*i;
for( j=i*i; j<=lim; j+=k )
core[j] = 1;
for( j=(k-(above-i)%k)%k; j<=s2; j+=k ) // hopscotch to the top
offset[j] = 1;
}
printf(" %d +: ",above);
for( i=0; i<=s2 && n>0 ; ++i )
if( !offset[i] ) // not a composite,
{
printf(" %d", i); // thus, a prime
--n;
}
}
int main()
{
// primes(10,1000); // 1000 +: 9 13 19 21 31 33 39 49 51 61
// primes(10,100000); // 100000 +: 3 19 43 49 57 69 103 109 129 151
primes(10,100000000); // 100000000 +: 7 37 39 49 73 81 123 127 193 213
// 1000000000 +: 7 9 21 33 87 93 97 103 123 181
return 0;
}
There are many improvements yet that you can add here. For instance, instead of marking the evens, just don't represent them altogether.
回答3:
#include <stdio.h>
static int primes[] = {
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,
101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,
211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,
307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,
401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,
503,509,521,523,541,547,557,563,569,571,577,587,593,599,
601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,
701,709,719,727,733,739,743,751,757,761,769,773,787,797,
809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,
907,911,919,929,937,941,947,953,967,971,977,983,991,997,
1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,
1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,
1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,
1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,
1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499
};
int primeN = sizeof(primes)/sizeof(int);
void printPrime(int n, int count){
int i;
for(i=0;primes[i]<n;i++);
while(count){
printf("%d\n", primes[i++]);
count--;
}
}
int main(){
printf("first 10 primes after 100\n");
printPrime(100, 10);
printf("first 25 primes after 1000\n");
printPrime(1000, 25);
getch();
}
回答4:
For example you want to find 10 primes after 100. One way (not an efficient one) is that we know that 5 numbers are even and are not prime so for other five numbers check whether their mod to (3,5,7,9) are 0 or not if not for all of them, then it is prime number.
来源:https://stackoverflow.com/questions/9543337/find-n-primes-after-a-given-prime-number-without-using-any-function-that-checks