numpy.random.choice
allows for weighted selection from a vector, i.e.
arr = numpy.array([1, 2, 3])
weights = numpy.array([0.2, 0.5, 0.3])
choice = numpy.random.choice(arr, p=weights)
selects 1 with probability 0.2, 2 with probability 0.5, and 3 with probability 0.3.
What if we wanted to do this quickly in a vectorized fashion for a 2D array (matrix) for which each of the rows are a vector of probabilities? That is, we want a vector of choices from a stochastic matrix? This is the super slow way:
import numpy as np
m = 10
n = 100 # Or some very large number
items = np.arange(m)
prob_weights = np.random.rand(m, n)
prob_matrix = prob_weights / prob_weights.sum(axis=0, keepdims=True)
choices = np.zeros((n,))
# This is slow, because of the loop in Python
for i in range(n):
choices[i] = np.random.choice(items, p=prob_matrix[:,i])
print(choices)
:
array([ 4., 7., 8., 1., 0., 4., 3., 7., 1., 5., 7., 5., 3.,
1., 9., 1., 1., 5., 9., 8., 2., 3., 2., 6., 4., 3.,
8., 4., 1., 1., 4., 0., 1., 8., 5., 3., 9., 9., 6.,
5., 4., 8., 4., 2., 4., 0., 3., 1., 2., 5., 9., 3.,
9., 9., 7., 9., 3., 9., 4., 8., 8., 7., 6., 4., 6.,
7., 9., 5., 0., 6., 1., 3., 3., 2., 4., 7., 0., 6.,
3., 5., 8., 0., 8., 3., 4., 5., 2., 2., 1., 1., 9.,
9., 4., 3., 3., 2., 8., 0., 6., 1.])
This post suggests that cumsum
and bisect
could be a potential approach, and is fast. But while numpy.cumsum(arr, axis=1)
can do this along one axis of a numpy array, the bisect.bisect
function only works on a single array at a time. Similarly, numpy.searchsorted
only works on 1D arrays as well.
Is there a quick way to do this using only vectorized operations?
Here's a fully vectorized version that's pretty fast:
def vectorized(prob_matrix, items):
s = prob_matrix.cumsum(axis=0)
r = np.random.rand(prob_matrix.shape[1])
k = (s < r).sum(axis=0)
return items[k]
In theory, searchsorted
is the right function to use for looking up the random value in the cumulatively summed probabilities, but with m
being relatively small, k = (s < r).sum(axis=0)
ends up being much faster. Its time complexity is O(m), while the searchsorted
method is O(log(m)), but that will only matter for much larger m
. Also, cumsum
is O(m), so both vectorized
and @perimosocordiae's improved
are O(m). (If your m
is, in fact, much larger, you'll have to run some tests to see how large m
can be before this method is slower.)
Here's the timing I get with m = 10
and n = 10000
(using the functions original
and improved
from @perimosocordiae's answer):
In [115]: %timeit original(prob_matrix, items)
1 loops, best of 3: 270 ms per loop
In [116]: %timeit improved(prob_matrix, items)
10 loops, best of 3: 24.9 ms per loop
In [117]: %timeit vectorized(prob_matrix, items)
1000 loops, best of 3: 1 ms per loop
The full script where the functions are defined is:
import numpy as np
def improved(prob_matrix, items):
# transpose here for better data locality later
cdf = np.cumsum(prob_matrix.T, axis=1)
# random numbers are expensive, so we'll get all of them at once
ridx = np.random.random(size=n)
# the one loop we can't avoid, made as simple as possible
idx = np.zeros(n, dtype=int)
for i, r in enumerate(ridx):
idx[i] = np.searchsorted(cdf[i], r)
# fancy indexing all at once is faster than indexing in a loop
return items[idx]
def original(prob_matrix, items):
choices = np.zeros((n,))
# This is slow, because of the loop in Python
for i in range(n):
choices[i] = np.random.choice(items, p=prob_matrix[:,i])
return choices
def vectorized(prob_matrix, items):
s = prob_matrix.cumsum(axis=0)
r = np.random.rand(prob_matrix.shape[1])
k = (s < r).sum(axis=0)
return items[k]
m = 10
n = 10000 # Or some very large number
items = np.arange(m)
prob_weights = np.random.rand(m, n)
prob_matrix = prob_weights / prob_weights.sum(axis=0, keepdims=True)
I don't think it's possible to completely vectorize this, but you can still get a decent speedup by vectorizing as much as you can. Here's what I came up with:
def improved(prob_matrix, items):
# transpose here for better data locality later
cdf = np.cumsum(prob_matrix.T, axis=1)
# random numbers are expensive, so we'll get all of them at once
ridx = np.random.random(size=n)
# the one loop we can't avoid, made as simple as possible
idx = np.zeros(n, dtype=int)
for i, r in enumerate(ridx):
idx[i] = np.searchsorted(cdf[i], r)
# fancy indexing all at once is faster than indexing in a loop
return items[idx]
Testing against the version in the question:
def original(prob_matrix, items):
choices = np.zeros((n,))
# This is slow, because of the loop in Python
for i in range(n):
choices[i] = np.random.choice(items, p=prob_matrix[:,i])
return choices
Here's the speedup (using the setup code given in the question):
In [45]: %timeit original(prob_matrix, items)
100 loops, best of 3: 2.86 ms per loop
In [46]: %timeit improved(prob_matrix, items)
The slowest run took 4.15 times longer than the fastest. This could mean that an intermediate result is being cached
10000 loops, best of 3: 157 µs per loop
I'm not sure why there's a big discrepancy in timings for my version, but even the slowest run (~650 µs) is still almost 5x faster.
来源:https://stackoverflow.com/questions/34187130/fast-random-weighted-selection-across-all-rows-of-a-stochastic-matrix