问题
I'm working on a high-dimensional problem (~4k terms) and would like to retrieve top k-similar (by cosine similarity) and can't afford to do a pair-wise calculation.
My training set is 6million x 4k matrix and I would like to make predictions for 600k x 4k matrix.
What is the most efficient way to retrieve the k-similar items for each item in my 600k x 4k matrix?
Ideally, I would like to get a matrix which is 600k x 10 (i.e., top 10-similar items for each of the 600k items).
ps: I've researched the SO website and found almost all "cosine similarity in R" questions refer to cosine_sim(vector1, vector2
). But this question refers to cosine_sim(matrix1, matrix2)
.
Update The following code uses a naive method to find the cosine similarity between each row in the testset and every row in the training set.
set.seed(123)
train<-matrix(round(runif(30),0),nrow=6,ncol=5)
set.seed(987)
test<-matrix(round(runif(20),0),nrow=4,ncol=5)
train
[1,] 0 1 1 0 1
[2,] 1 1 1 1 1
[3,] 0 1 0 1 1
[4,] 1 0 1 1 1
[5,] 1 1 0 1 0
[6,] 0 0 0 1 0
test
[1,] 0 1 1 0 0
[2,] 1 0 1 0 1
[3,] 1 0 0 0 0
[4,] 1 0 0 1 1
coSim<-function(mat1, mat2, topK){
require(plyr)
#mat2: is the testset
#mat1: is the training set. We will find cosine similarity between each row in testset and every row in trainingset.
#topK: user-input. for each row in testset we will return 'topk' similar rows(index) from the testset
#set up an empty result matrix. nrow(result) will be the same as the cartesian product between mat1 & mat2.
result<-matrix(rep(NA, nrow(mat1)*nrow(mat2)), nrow=nrow(mat1)*nrow(mat2), ncol=3)
k=1
for(i in 1:nrow(mat2)){
for(j in 1:nrow(mat1)){
result[k,1]<-i
result[k,2]<-j
result[k,3]<-crossprod(mat1[j,], mat2[i,])/sqrt(crossprod(mat1[j,]) * crossprod(mat2[i,]))
k<-k+1
}
}
#sort the result matrix by cosine similarity found for each row in testset. not sure how to keep topK from each group so convert to df
result<-as.data.frame(result)
colnames(result)<-c("testRowId", "trainRowId","CosineSimilarity")
result<-ddply(result, "testRowId", function(x) head(x[order(x$CosineSimilarity, decreasing = TRUE) , ], topK))
resultMat<-matrix(result$trainRowId, nrow=nrow(mat2), ncol=topK,byrow=T)
finalResult<-list(similarity=result, index=resultMat)
}
system.time(cosineSim<-coSim(train, test, topK=2)) #0.12 secs
cosineSim
$similarity
testRowId trainRowId CosineSimilarity
1 1 1 0.8164966
2 1 2 0.6324555
3 2 4 0.8660254
4 2 2 0.7745967
5 3 5 0.5773503
6 3 4 0.5000000
7 4 4 0.8660254
8 4 2 0.7745967
$index
[,1] [,2]
[1,] 1 2
[2,] 4 2
[3,] 5 4
[4,] 4 2
set.seed(123)
train<-matrix(round(runif(1000000),0),nrow=5000,ncol=200)
set.seed(987)
test<-matrix(round(runif(400000),0),nrow=2000,ncol=200)
system.time(cosineSim<-coSim(train, test, topK=50)) #380secs
When I run the same function with 5000x200 matrix for training and 2000x200 matrix for testing, it took over 380secs.
Ideally, I would like to see some ideas where I do not have to calculate the similarity between each and every row. If that is not possible, some pointers on how to vectorise the above code will be helpful.
回答1:
No need to compute the similarity for every row. You can use this instead:
coSim2<-function(mat1, mat2, topK){
#similarity computation:
xy <- tcrossprod(mat1, mat2)
xx <- rowSums(mat1^2)
yy <- rowSums(mat2^2)
result <- xy/sqrt(outer(xx,yy))
#top similar rows from train (per row in test):
top <- apply(result, 2, order, decreasing=TRUE)[1:topK,]
result_df <- data.frame(testRowId=c(col(top)), trainRowId=c(top))
result_df$CosineSimilarity <- result[as.matrix(result_df[,2:1])]
list(similarity=result_df, index=t(top))
}
Test data (I've reduced your train
matrix)
set.seed(123)
train<-matrix(round(runif(100000),0),nrow=500,ncol=200)
set.seed(987)
test<-matrix(round(runif(400000),0),nrow=2000,ncol=200)
Result:
> system.time(cosineSim<-coSim(train, test, topK=50)) #380secs
user system elapsed
41.71 1.59 43.72
> system.time(cosineSim2<-coSim2(train, test, topK=50)) #380secs
user system elapsed
0.46 0.02 0.49
Using your full 5000 x 200 train
matrix, coSim2
runs in 7.8 sec.
Also note:
> any(cosineSim$similarity != cosineSim2$similarity)
[1] FALSE
> any(cosineSim$index != cosineSim2$index)
[1] FALSE
You can't use identical
because my function returns integers instead of doubles for row IDs.
来源:https://stackoverflow.com/questions/18946966/how-to-efficiently-retrieve-top-k-similar-vectors-by-cosine-similarity-using-r