Vectorized implementation of exponentially weighted moving standard deviation using R?

纵然是瞬间 提交于 2021-02-20 05:13:26

问题


I am trying to implement a vectorized exponentially weighted moving standard deviation using R. Is this the correct approach?

ewma <- function (x, alpha) {
  c(stats::filter(x * ratio, 1 - ratio, "recursive", init = x[1]))
}
ewmsd <- function(x, alpha) {
  sqerror <- na.omit((x - lag(ewma(x, ratio)))^2)
  ewmvar <- c(stats::filter(sqerror * ratio, 1 - ratio, "recursive", init = 0))
  c(NA, sqrt(ewmvar))
}

I'm guessing it's not, since its output is different from Python's pandas.Series.ewm.std() function.

When I run

ewmsd(x = 0:9, alpha = 0.96)

the output is

 [1]        NA 0.2236068 0.4874679 0.7953500 1.1353903 1.4993855 1.8812961 2.2764708 2.6812160 3.0925367

However, with

pd.Series(range(10)).ewm(alpha = 0.96).std()

the output is

0         NaN
1    0.707107
2    0.746729
3    0.750825
4    0.751135
5    0.751155
6    0.751156
7    0.751157
8    0.751157
9    0.751157

回答1:


According to the documentation for Pandas, the pandas.Series.ewm() function receives an adjust parameter, which defaults to TRUE. When adjust == TRUE, the exponentially weighted moving average from pandas.Series.ewm.mean() is calculated through weights, not recursively. Naturally, this affects the standard deviation output as well. See this Github issue and this question for more info.

Here's a vectorized solution in R:

   ewmsd <- function(x, alpha) {
      n <- length(x)
      sapply(
        1:n,
        function(i, x, alpha) {
          y <- x[1:i]
          m <- length(y)
          weights <- (1 - alpha)^((m - 1):0)
          ewma <- sum(weights * y) / sum(weights)
          bias <- sum(weights)^2 / (sum(weights)^2 - sum(weights^2))
          ewmsd <- sqrt(bias * sum(weights * (y - ewma)^2) / sum(weights))
        },
        x = x,
        alpha = alpha
      )
    }


来源:https://stackoverflow.com/questions/54585015/vectorized-implementation-of-exponentially-weighted-moving-standard-deviation-us

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!