dijkstra算法解决单源最短路问题

最后都变了- 提交于 2021-02-19 23:11:43

简介

最近这段时间刚好做了最短路问题的算法报告,因此对dijkstra算法也有了更深的理解,下面和大家分享一下我的学习过程。

前言

呃呃呃,听起来也没那么难,其实,真的没那么难,只要弄清楚思路就很容易了。下面正经的跟大家说下解决问题的过程。

 实现过程

我们先用一个d[i]数组表示起点到点i的直接距离,然后从d[i]数组中找最小的值所对应的点,然后看点与点i之间相连的点j,

然后比较d[j]和d[i]+w[i][j](w[i][j]表示的是点i到点j之间的距离)之间的大小,然后把d[j]和d[i]+w[i][j之间较小的一个赋值给

d[j],即d[j]=min(d[j],d[i]+w[i][j])。并把点i标记已访问。

然后我们不断的进行上面的操作,直到把所有的点全部访问完毕。

 

下面是操作过程的流程图

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

 

 

 

 

 

解决问题

题目大概意思:“比如说,在一张无向图中,给了结点数和边的数目让你求出起点到其他各点的最短距离。”

输入数据为:

下面是具体实现的代码:

/*dijkstra算法*/
#include<iostream>
const long long maxint = 100000000000;
using namespace std;
const int maxn = 10010;
int n, m;
int a, b, v, w[maxn][maxn];
int dis[maxn];   //记录起点到别的结点之间的距离
bool s[maxn];    //标记这个点是否在图中
//v0=1;
void dijkstra(int v0) {
    dis[0] = 0;
    dis[v0] = 0;
    s[v0] = true;
    for (int i = 1; i <= n; ++i) {    //将每个点到起点的距离更新一下
        dis[i] = w[v0][i];
        s[i] = false;
    }
    while (1) {
        int min = maxint;
        int u = -1;     //标志变量
        for (int j = 1; j <= n; ++j) {
            if ((!s[j]) && dis[j] < min) {    //找出不在图里面且权值最小的点
                u = j;                        //将这个点记录下来
                min = dis[j];
            }
        }
        if (u == -1) break;
        s[u] = true;   //将这个点放入图中
        for (int j = 1; j <= n; ++j) {
            if ((!s[j]) && dis[u] + w[u][j] < dis[j]) {
                dis[j] = dis[u] + w[u][j];   //松弛操作    更新起点到这个点的距离
            }
        }
    }
}
int main() {
    cout << "请输入结点数目和点数: ";
    while (cin >> n >> m && n&&m) {    //输入点的数目和边的数目        
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= n; ++j) {
                w[i][j] = maxint;     //先将每条边的距离弄成很大,后面如果两条边的权值不等于这个很大的数,则说明两个数之间有边
            }
        }
        cout << "请输入两点之间的距离" << endl;
        for (int i = 0; i < m; ++i) {
            cin >> a >> b >> v;
            w[a][b] = v;       //因为无向图
            w[b][a] = v;       //所以两个都赋值
        }
        dijkstra(1);
        for (int i = 2; i <= n; ++i) {
            if(w[1][i]!=maxint)
            cout << "起点1到点" << i << "的最短距离是" << dis[i] << endl;
            else cout << "起点1到点" << i << "没有路径"<< endl;
        }
    //    cout << dis[n] << endl;
    }
}

 

 

程序运行的结果就是这样的。。。。。。。

 

好了,到此为止,朴素版本的dijkstra算法就讲完了,感觉好low啊【嘤嘤嘤】

那个那个,估计下一篇博客会把堆优化版本的dijkstra算法更新一下,然后,,,下一次更新不知道是啥时候了,哈哈!

 

 

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!