问题
I am wondering if the filename information of the image encoded could be encoded into a TFRecord file while creating the tfrecord files, and if so, how could this information be decoded back? When decoded, is the filename a Tensor object?
回答1:
Just like fabrizioM said, you have to store the sources in the tfrecords file if you want to use them. Here is an example:
#!/usr/bin/env python
"""Example for reading and writing tfrecords."""
import tensorflow as tf
from PIL import Image
import numpy as np
import scipy.misc
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def write_images(filenames=['Aurelia-aurita-3.jpg'],
labels=[0],
tf_records_filename="example.tfrecords"):
"""
Write images to tfrecords file.
Parameters
----------
filenames : list of strings
List containing the paths to image files.
labels : list of integers
tf_records_filename : string
Where the file gets stored
"""
filename_queue = tf.train.string_input_producer(filenames)
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
my_img = tf.image.decode_jpeg(value)
init_op = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init_op)
# Start populating the filename queue.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
writer = tf.python_io.TFRecordWriter(tf_records_filename)
for i in range(len(filenames)):
image = my_img.eval() # image is an image tensor
image_raw = image.tostring()
rows = image.shape[0]
cols = image.shape[1]
if np.ndim(image) == 3:
depth = image.shape[2]
else:
depth = 1
example = tf.train.Example(features=tf.train.Features(feature={
'height': _int64_feature(rows),
'width': _int64_feature(cols),
'depth': _int64_feature(depth),
'label': _int64_feature(labels[i]),
'image_raw': _bytes_feature(image_raw),
'src': _bytes_feature(filenames[i])}))
writer.write(example.SerializeToString())
coord.request_stop()
coord.join(threads)
def read_and_decode(filename_queue):
"""Read and decode them from filename_queue."""
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64),
'src': tf.FixedLenFeature([], tf.string)
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
label = tf.cast(features['label'], tf.int32)
height = tf.cast(features['height'], tf.int32)
width = tf.cast(features['width'], tf.int32)
depth = tf.cast(features['depth'], tf.int32)
# fn = tf.cast(features['filename'], tf.str)
return image, label, height, width, depth, features['src']
def get_all_records(record_filename):
"""Get all records from record_filename."""
records = []
with tf.Session() as sess:
fn_queue = tf.train.string_input_producer([record_filename])
image, label, height, width, depth, src = read_and_decode(fn_queue)
image = tf.reshape(image, tf.stack([height, width, 3]))
init_op = tf.global_variables_initializer()
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
nr_of_images = 1
for i in range(nr_of_images):
example, label, src = sess.run([image, label, src])
img = Image.fromarray(example, 'RGB')
records.append({'image': img, 'label': label,
'src': src})
coord.request_stop()
coord.join(threads)
return records
write_images()
records = get_all_records('example.tfrecords')
print(records[0]['src'])
scipy.misc.imshow(records[0]['image'])
来源:https://stackoverflow.com/questions/42444468/tensorflow-is-there-a-way-to-locate-the-filenames-of-images-encoded-into-tfreco