Consider the following matrix
Ja(t1, t2, t3, t4, t5, t6) =
[ (sin(t5)*(cos(t3)*cos(t4)*(cos(t1)*sin(t2) + cos(t2)*sin(t1)) - sin(t3)*sin(t4)*(cos(t1)*sin(t2) + cos(t2)*sin(t1))))/5 - sin(t1)/100 - (219*sin(t1)*sin(t2))/1000 - (19*cos(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1)))/100 - (21*cos(t3)*cos(t4)*(cos(t1)*sin(t2) + cos(t2)*sin(t1)))/1000 + (21*sin(t3)*sin(t4)*(cos(t1)*sin(t2) + cos(t2)*sin(t1)))/1000, (219*cos(t1)*cos(t2))/1000 + (sin(t5)*(cos(t3)*cos(t4)*(cos(t1)*sin(t2) + cos(t2)*sin(t1)) - sin(t3)*sin(t4)*(cos(t1)*sin(t2) + cos(t2)*sin(t1))))/5 - (19*cos(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1)))/100 - (21*cos(t3)*cos(t4)*(cos(t1)*sin(t2) + cos(t2)*sin(t1)))/1000 + (21*sin(t3)*sin(t4)*(cos(t1)*sin(t2) + cos(t2)*sin(t1)))/1000, (sin(t5)*(cos(t3)*sin(t4)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)) + cos(t4)*sin(t3)*(cos(t1)*cos(t2) - sin(t1)*sin(t2))))/5 - (19*sin(t3)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)))/100 - (21*cos(t3)*sin(t4)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)))/1000 - (21*cos(t4)*sin(t3)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)))/1000, (sin(t5)*(cos(t3)*sin(t4)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)) + cos(t4)*sin(t3)*(cos(t1)*cos(t2) - sin(t1)*sin(t2))))/5 - (21*cos(t3)*sin(t4)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)))/1000 - (21*cos(t4)*sin(t3)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)))/1000, -(cos(t5)*(cos(t3)*cos(t4)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)) - sin(t3)*sin(t4)*(cos(t1)*cos(t2) - sin(t1)*sin(t2))))/5, 0]
[ cos(t1)/100 + (219*cos(t1)*sin(t2))/1000 + (29*cos(t1)*sin(t3))/1000 - (21*cos(t4)*(cos(t1)*sin(t3) - cos(t3)*(cos(t1)*cos(t2) - sin(t1)*sin(t2))))/1000 - (21*sin(t4)*(cos(t1)*cos(t3) + sin(t3)*(cos(t1)*cos(t2) - sin(t1)*sin(t2))))/1000 + (sin(t5)*(cos(t4)*(cos(t1)*sin(t3) - cos(t3)*(cos(t1)*cos(t2) - sin(t1)*sin(t2))) + sin(t4)*(cos(t1)*cos(t3) + sin(t3)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)))))/5 + (19*cos(t3)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)))/100, (219*cos(t2)*sin(t1))/1000 - (sin(t5)*(cos(t3)*cos(t4)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)) - sin(t3)*sin(t4)*(cos(t1)*cos(t2) - sin(t1)*sin(t2))))/5 + (19*cos(t3)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)))/100 + (21*cos(t3)*cos(t4)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)))/1000 - (21*sin(t3)*sin(t4)*(cos(t1)*cos(t2) - sin(t1)*sin(t2)))/1000, (29*cos(t3)*sin(t1))/1000 - (21*cos(t4)*(cos(t3)*sin(t1) + sin(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1))))/1000 + (21*sin(t4)*(sin(t1)*sin(t3) - cos(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1))))/1000 - (19*sin(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1)))/100 + (sin(t5)*(cos(t4)*(cos(t3)*sin(t1) + sin(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1))) - sin(t4)*(sin(t1)*sin(t3) - cos(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1)))))/5, (21*sin(t4)*(sin(t1)*sin(t3) - cos(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1))))/1000 - (21*cos(t4)*(cos(t3)*sin(t1) + sin(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1))))/1000 + (sin(t5)*(cos(t4)*(cos(t3)*sin(t1) + sin(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1))) - sin(t4)*(sin(t1)*sin(t3) - cos(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1)))))/5, (cos(t5)*(cos(t4)*(sin(t1)*sin(t3) - cos(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1))) + sin(t4)*(cos(t3)*sin(t1) + sin(t3)*(cos(t1)*sin(t2) + cos(t2)*sin(t1)))))/5, 0]
[ 0, 0, (21*cos(t3)*cos(t4))/1000 - (29*cos(t3))/1000 - (21*sin(t3)*sin(t4))/1000 - (sin(t5)*(cos(t3)*cos(t4) - sin(t3)*sin(t4)))/5, (21*cos(t3)*cos(t4))/1000 - (21*sin(t3)*sin(t4))/1000 - (sin(t5)*(cos(t3)*cos(t4) - sin(t3)*sin(t4)))/5, -(cos(t5)*(cos(t3)*sin(t4) + cos(t4)*sin(t3)))/5, 0]
The problem is that when I put my arguments, MATLAB doesn't calculate the matrix numerically, rather it leaves it symbolically.
This is the result:
Ja(q(1),q(2),q(3),q(4),q(5),q(6)) =
[ sin(63/100)/100 + (219*sin(528276371951843/1125899906842624)*sin(63/100))/1000 + (19*cos(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100)))/100 + (sin(59/125)*(cos(157/125)*cos(157/250)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100)) - sin(157/125)*sin(157/250)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100))))/5 + (21*cos(157/125)*cos(157/250)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100)))/1000 - (21*sin(157/125)*sin(157/250)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100)))/1000, (219*cos(528276371951843/1125899906842624)*cos(63/100))/1000 + (19*cos(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100)))/100 + (sin(59/125)*(cos(157/125)*cos(157/250)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100)) - sin(157/125)*sin(157/250)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100))))/5 + (21*cos(157/125)*cos(157/250)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100)))/1000 - (21*sin(157/125)*sin(157/250)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100)))/1000, - (19*sin(157/125)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)))/100 - (sin(59/125)*(cos(157/125)*sin(157/250)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)) + cos(157/250)*sin(157/125)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100))))/5 - (21*cos(157/125)*sin(157/250)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)))/1000 - (21*cos(157/250)*sin(157/125)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)))/1000, - (sin(59/125)*(cos(157/125)*sin(157/250)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)) + cos(157/250)*sin(157/125)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100))))/5 - (21*cos(157/125)*sin(157/250)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)))/1000 - (21*cos(157/250)*sin(157/125)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)))/1000, -(cos(59/125)*(cos(157/125)*cos(157/250)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)) - sin(157/125)*sin(157/250)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100))))/5, 0]
[ cos(63/100)/100 + (219*sin(528276371951843/1125899906842624)*cos(63/100))/1000 + (29*cos(63/100)*sin(157/125))/1000 + (19*cos(157/125)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)))/100 - (21*cos(157/250)*(cos(63/100)*sin(157/125) - cos(157/125)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100))))/1000 - (sin(59/125)*(cos(157/250)*(cos(63/100)*sin(157/125) - cos(157/125)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100))) + sin(157/250)*(cos(63/100)*cos(157/125) + sin(157/125)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)))))/5 - (21*sin(157/250)*(cos(63/100)*cos(157/125) + sin(157/125)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100))))/1000, (19*cos(157/125)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)))/100 - (219*cos(528276371951843/1125899906842624)*sin(63/100))/1000 + (sin(59/125)*(cos(157/125)*cos(157/250)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)) - sin(157/125)*sin(157/250)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100))))/5 + (21*cos(157/125)*cos(157/250)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)))/1000 - (21*sin(157/125)*sin(157/250)*(cos(528276371951843/1125899906842624)*cos(63/100) + sin(528276371951843/1125899906842624)*sin(63/100)))/1000, (19*sin(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100)))/100 - (29*cos(157/125)*sin(63/100))/1000 + (21*cos(157/250)*(cos(157/125)*sin(63/100) + sin(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100))))/1000 - (21*sin(157/250)*(sin(63/100)*sin(157/125) - cos(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100))))/1000 + (sin(59/125)*(cos(157/250)*(cos(157/125)*sin(63/100) + sin(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100))) - sin(157/250)*(sin(63/100)*sin(157/125) - cos(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100)))))/5, (21*cos(157/250)*(cos(157/125)*sin(63/100) + sin(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100))))/1000 - (21*sin(157/250)*(sin(63/100)*sin(157/125) - cos(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100))))/1000 + (sin(59/125)*(cos(157/250)*(cos(157/125)*sin(63/100) + sin(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100))) - sin(157/250)*(sin(63/100)*sin(157/125) - cos(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100)))))/5, -(cos(59/125)*(cos(157/250)*(sin(63/100)*sin(157/125) - cos(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100))) + sin(157/250)*(cos(157/125)*sin(63/100) + sin(157/125)*(cos(528276371951843/1125899906842624)*sin(63/100) - sin(528276371951843/1125899906842624)*cos(63/100)))))/5, 0]
[ 0, 0, (21*cos(157/125)*cos(157/250))/1000 - (29*cos(157/125))/1000 - (21*sin(157/125)*sin(157/250))/1000 + (sin(59/125)*(cos(157/125)*cos(157/250) - sin(157/125)*sin(157/250)))/5, (21*cos(157/125)*cos(157/250))/1000 - (21*sin(157/125)*sin(157/250))/1000 + (sin(59/125)*(cos(157/125)*cos(157/250) - sin(157/125)*sin(157/250)))/5, -(cos(59/125)*(cos(157/125)*sin(157/250) + cos(157/250)*sin(157/125)))/5, 0]
Is there a way I can get real numbers ?
Short answer: evaluate your symbolic expression numerically using eval
or convert it to a specific type using one of these options, f.e. double
or vpa
.
Note that eval
may be twice as slow as using double
, but is sometimes slightly faster too
Explanation
The problem is that MATLAB does not evaluate your symbolic expression numerically, it only simplifies your expression mathematically.
Example:
syms x
my_function(x) = cos(x)
% exact algebraic solution is known:
my_function(0) % returns 1
my_function(pi) % returns -1
my_function(pi/2) % returns 0
my_function(pi/6) % returns 3^(1/2)/2
% result can only be numerically approximated:
my_function(3.1415) % returns cos(6283/2000)
my_function(1) % returns cos(1)
So, MATLAB is able to simplify the cos
expression when the result is exactly known. In general, the result of cos
can only be numerically evaluated, therefore MATLAB displays cos
in it answer.
If you want a numerical result you can use one of the following options:
eval
: evaluates your matrix numericallydouble
: converts to double precisionsingle
: converts to single precisionint8
: converts to 8 bit integers (alternativesint16
,int32
,int64
)vpa
: converts to variable-precision arithmetic, i.e. it allows you to specify the desired accuracy (number of significant digits) of the result
See Conversion Between Symbolic and Numeric for more information
Is using eval
a good option?
As pointed out by Sardar Usama, using eval
(to evaluate a string) is often bad practice:
But, is this the same eval
?
No, I don't think so. help sym/eval
returns (in contrast to help eval
):
eval Evaluate a symbolic expression. eval(S) evaluates the character representation of the symbolic expression S in the caller's workspace.
Also using the MATLAB debugger points out that it is a different function. However, the full explanation mentions that it evaluates the character representation of the expression, which can also be seen in the source code:
s = evalin('caller',vectorize(map2mat(char(x))));
So, it uses internally evalin
, which is similar to eval
, to evaluate a string. This may not be very efficient.
So, we should avoid sym/eval
too?
Maybe not, also double
uses eval
internally to evaluate a string:
Xstr = mupadmex('symobj::double', S.s, 0); X = eval(Xstr);
The difference is that sym/eval
uses eval
(evalin
) for the original character representation, i.e. the whole expression, whereas double
uses it to parse the final result, i.e. the numerically evaluated value.
Conclusion: for your example double
seems to be the appropriate method as it is twice as fast as using eval
. However, for the following example eval
is somewhat faster (~15%):
my_function(x) = cos(x);
for i=2:100
my_function(x) = my_function(x) + cos(i*x);
end
来源:https://stackoverflow.com/questions/45369002/matrix-with-symbolic-math-gives-a-symbolic-answer-not-a-numeric-one