问题
I'm trying out a simple Tensorflow code to compute the product of two matrices multiple times. My code is as follows:
import numpy as np
import tensorflow as tf
times = 10
alpha = 2
beta = 3
graph = tf.Graph()
with graph.as_default():
A = tf.placeholder(tf.float32)
B = tf.placeholder(tf.float32)
C = tf.placeholder(tf.float32)
alpha = tf.constant(2.0, shape=[1, 1])
beta = tf.constant(3.0, shape=[1, 1])
D = alpha*tf.matmul(A, B) + beta*C
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
for time in xrange(1, 2):
N = 10**time
a = tf.constant(np.random.random((N, N)))
b = tf.constant(np.random.random((N, N)))
c = tf.constant(np.random.random((N, N)))
for num in xrange(1, 3):
print num
session.run(D, feed_dict={A:a.eval(), B:b.eval(), C:c.eval()})
c = D
Upon running session.run() in the for loop:
for num in xrange(1, 3):
print num
session.run(D, feed_dict={A:a.eval(), B:b.eval(), C:c.eval()})
c = D
I get the following error:
I looked at the sample code for MNIST on the Tensorflow website but they run 'session.run()' in a similar manner in a for loop. I'm looking for any insight on why 'session.run()' in my code does not work inside a for loop.
Thank you.
回答1:
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
for time in xrange(1, 2):
N = 10**time
a = np.random.random((N, N))
b = np.random.random((N, N))
c = np.random.random((N, N))
for num in xrange(1, 3):
print num
c = session.run(D, feed_dict={A:a, B:b, C:c})
You can feed numpy
array directly and Session.run(D, ...)
returns D's
evaluation.
来源:https://stackoverflow.com/questions/48767184/tensorflow-running-session-multiple-times-in-a-loop