#0 系列目录#
-
Zookeeper系列
-
Zookeeper源码
-
Zookeeper应用
#1 场景描述# 在分布式应用, 往往存在多个进程提供同一服务. 这些进程有可能在相同的机器上, 也有可能分布在不同的机器上. 如果这些进程共享了一些资源, 可能就需要分布式锁来锁定对这些资源的访问
。
#2 思路# 进程需要访问共享数据时, 就在"/locks"节点下创建一个sequence类型的子节点, 称为thisPath
. 当thisPath在所有子节点中最小时, 说明该进程获得了锁. 进程获得锁之后, 就可以访问共享资源了. 访问完成后, 需要将thisPath删除. 锁由新的最小的子节点获得.
有了清晰的思路之后, 还需要补充一些细节. 进程如何知道thisPath是所有子节点中最小的呢? 可以在创建的时候, 通过getChildren方法获取子节点列表, 然后在列表中找到排名比thisPath前1位的节点, 称为waitPath, 然后在waitPath上注册监听, 当waitPath被删除后, 进程获得通知, 此时说明该进程获得了锁.
#3 算法#
- lock操作过程:
首先为一个lock场景,在zookeeper中指定对应的一个根节点,用于记录资源竞争的内容;
每个lock创建后,会lazy在zookeeper中创建一个node节点,表明对应的资源竞争标识。 (小技巧:node节点为EPHEMERAL_SEQUENTIAL,自增长的临时节点
);
进行lock操作时,获取对应lock根节点下的所有子节点,也即处于竞争中的资源标识;
按照Fair(公平)竞争
的原则,按照对应的自增内容做排序,取出编号最小的一个节点做为lock的owner,判断自己的节点id是否就为owner id,如果是则返回,lock成功。
如果自己非owner id,按照排序的结果找到序号比自己前一位的id,关注它锁释放的操作(也就是exist watcher),形成一个链式的触发过程
;
- unlock操作过程:
将自己id对应的节点删除即可,对应的下一个排队的节点就可以收到Watcher事件,从而被唤醒得到锁后退出
;
- 其中的几个关键点:
node节点选择为EPHEMERAL_SEQUENTIAL很重要。
自增长的特性,可以方便构建一个基于Fair特性的锁
,前一个节点唤醒后一个节点,形成一个链式的触发过程。可以有效的避免"惊群效应"(一个锁释放,所有等待的线程都被唤醒)
,有针对性的唤醒,提升性能。
选择一个EPHEMERAL临时节点的特性
。因为和zookeeper交互是一个网络操作,不可控因素过多,比如网络断了,上一个节点释放锁的操作会失败。临时节点是和对应的session挂接的,session一旦超时或者异常退出其节点就会消失,类似于ReentrantLock中等待队列Thread的被中断处理
。
获取lock操作是一个阻塞的操作,而对应的Watcher是一个异步事件
,所以需要使用互斥信号共享锁BooleanMutex进行通知
,可以比较方便的解决锁重入的问题。(锁重入可以理解为多次读操作,锁释放为写抢占操作)
- 注意:
使用EPHEMERAL会引出一个风险:在非正常情况下,网络延迟比较大会出现session timeout,zookeeper就会认为该client已关闭,从而销毁其id标示,竞争资源的下一个id就可以获取锁
。这时可能会有两个process同时拿到锁在跑任务
,所以设置好session timeout很重要。
同样使用PERSISTENT同样会存在一个死锁的风险,进程异常退出后,对应的竞争资源id一直没有删除,下一个id一直无法获取到锁对象
。
#4 实现# 1. DistributedLock.java源码:分布式锁
package com.king.lock;
import java.io.IOException;
import java.util.List;
import java.util.SortedSet;
import java.util.TreeSet;
import org.apache.commons.lang3.StringUtils;
import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;
/**
* Zookeeper 分布式锁
*/
public class DistributedLock {
private static final int SESSION_TIMEOUT = 10000;
private static final int DEFAULT_TIMEOUT_PERIOD = 10000;
private static final String CONNECTION_STRING = "127.0.0.1:2180,127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183";
private static final byte[] data = {0x12, 0x34};
private ZooKeeper zookeeper;
private String root;
private String id;
private LockNode idName;
private String ownerId;
private String lastChildId;
private Throwable other = null;
private KeeperException exception = null;
private InterruptedException interrupt = null;
public DistributedLock(String root) {
try {
this.zookeeper = new ZooKeeper(CONNECTION_STRING, SESSION_TIMEOUT, null);
this.root = root;
ensureExists(root);
} catch (IOException e) {
e.printStackTrace();
other = e;
}
}
/**
* 尝试获取锁操作,阻塞式可被中断
*/
public void lock() throws Exception {
// 可能初始化的时候就失败了
if (exception != null) {
throw exception;
}
if (interrupt != null) {
throw interrupt;
}
if (other != null) {
throw new Exception("", other);
}
if (isOwner()) {// 锁重入
return;
}
BooleanMutex mutex = new BooleanMutex();
acquireLock(mutex);
// 避免zookeeper重启后导致watcher丢失,会出现死锁使用了超时进行重试
try {
// mutex.lockTimeOut(DEFAULT_TIMEOUT_PERIOD, TimeUnit.MICROSECONDS);// 阻塞等待值为true
mutex.lock();
} catch (Exception e) {
e.printStackTrace();
if (!mutex.state()) {
lock();
}
}
if (exception != null) {
throw exception;
}
if (interrupt != null) {
throw interrupt;
}
if (other != null) {
throw new Exception("", other);
}
}
/**
* 尝试获取锁对象, 不会阻塞
*
* @throws InterruptedException
* @throws KeeperException
*/
public boolean tryLock() throws Exception {
// 可能初始化的时候就失败了
if (exception != null) {
throw exception;
}
if (isOwner()) { // 锁重入
return true;
}
acquireLock(null);
if (exception != null) {
throw exception;
}
if (interrupt != null) {
Thread.currentThread().interrupt();
}
if (other != null) {
throw new Exception("", other);
}
return isOwner();
}
/**
* 释放锁对象
*/
public void unlock() throws KeeperException {
if (id != null) {
try {
zookeeper.delete(root + "/" + id, -1);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
} catch (KeeperException.NoNodeException e) {
// do nothing
} finally {
id = null;
}
} else {
//do nothing
}
}
/**
* 判断某path节点是否存在,不存在就创建
* @param path
*/
private void ensureExists(final String path) {
try {
Stat stat = zookeeper.exists(path, false);
if (stat != null) {
return;
}
zookeeper.create(path, data, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
} catch (KeeperException e) {
exception = e;
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
interrupt = e;
}
}
/**
* 返回锁对象对应的path
*/
public String getRoot() {
return root;
}
/**
* 判断当前是不是锁的owner
*/
public boolean isOwner() {
return id != null && ownerId != null && id.equals(ownerId);
}
/**
* 返回当前的节点id
*/
public String getId() {
return this.id;
}
// ===================== helper method =============================
/**
* 执行lock操作,允许传递watch变量控制是否需要阻塞lock操作
*/
private Boolean acquireLock(final BooleanMutex mutex) {
try {
do {
if (id == null) { // 构建当前lock的唯一标识
long sessionId = zookeeper.getSessionId();
String prefix = "x-" + sessionId + "-";
// 如果第一次,则创建一个节点
String path = zookeeper.create(root + "/" + prefix, data, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
int index = path.lastIndexOf("/");
id = StringUtils.substring(path, index + 1);
idName = new LockNode(id);
}
if (id != null) {
List<String> names = zookeeper.getChildren(root, false);
if (names.isEmpty()) {
id = null; // 异常情况,重新创建一个
} else {
// 对节点进行排序
SortedSet<LockNode> sortedNames = new TreeSet<>();
for (String name : names) {
sortedNames.add(new LockNode(name));
}
if (!sortedNames.contains(idName)) {
id = null;// 清空为null,重新创建一个
continue;
}
// 将第一个节点做为ownerId
ownerId = sortedNames.first().getName();
if (mutex != null && isOwner()) {
mutex.unlock();// 直接更新状态,返回
return true;
} else if (mutex == null) {
return isOwner();
}
SortedSet<LockNode> lessThanMe = sortedNames.headSet(idName);
if (!lessThanMe.isEmpty()) {
// 关注一下排队在自己之前的最近的一个节点
LockNode lastChildName = lessThanMe.last();
lastChildId = lastChildName.getName();
// 异步watcher处理
Stat stat = zookeeper.exists(root + "/" + lastChildId, new Watcher() {
public void process(WatchedEvent event) {
acquireLock(mutex);
}
});
if (stat == null) {
acquireLock(mutex);// 如果节点不存在,需要自己重新触发一下,watcher不会被挂上去
}
} else {
if (isOwner()) {
mutex.unlock();
} else {
id = null;// 可能自己的节点已超时挂了,所以id和ownerId不相同
}
}
}
}
} while (id == null);
} catch (KeeperException e) {
exception = e;
if (mutex != null) {
mutex.unlock();
}
} catch (InterruptedException e) {
interrupt = e;
if (mutex != null) {
mutex.unlock();
}
} catch (Throwable e) {
other = e;
if (mutex != null) {
mutex.unlock();
}
}
if (isOwner() && mutex != null) {
mutex.unlock();
}
return Boolean.FALSE;
}
}
2. BooleanMutex.java源码:互斥信号共享锁
package com.king.lock;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;
/**
* 互斥信号共享锁
*/
public class BooleanMutex {
private Sync sync;
public BooleanMutex() {
sync = new Sync();
set(false);
}
/**
* 阻塞等待Boolean为true
* @throws InterruptedException
*/
public void lock() throws InterruptedException {
sync.innerLock();
}
/**
* 阻塞等待Boolean为true,允许设置超时时间
* @param timeout
* @param unit
* @throws InterruptedException
* @throws TimeoutException
*/
public void lockTimeOut(long timeout, TimeUnit unit) throws InterruptedException, TimeoutException {
sync.innerLock(unit.toNanos(timeout));
}
public void unlock(){
set(true);
}
/**
* 重新设置对应的Boolean mutex
* @param mutex
*/
public void set(Boolean mutex) {
if (mutex) {
sync.innerSetTrue();
} else {
sync.innerSetFalse();
}
}
public boolean state() {
return sync.innerState();
}
/**
* 互斥信号共享锁
*/
private final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -7828117401763700385L;
/**
* 状态为1,则唤醒被阻塞在状态为FALSE的所有线程
*/
private static final int TRUE = 1;
/**
* 状态为0,则当前线程阻塞,等待被唤醒
*/
private static final int FALSE = 0;
/**
* 返回值大于0,则执行;返回值小于0,则阻塞
*/
protected int tryAcquireShared(int arg) {
return getState() == 1 ? 1 : -1;
}
/**
* 实现AQS的接口,释放共享锁的判断
*/
protected boolean tryReleaseShared(int ignore) {
// 始终返回true,代表可以release
return true;
}
private boolean innerState() {
return getState() == 1;
}
private void innerLock() throws InterruptedException {
acquireSharedInterruptibly(0);
}
private void innerLock(long nanosTimeout) throws InterruptedException, TimeoutException {
if (!tryAcquireSharedNanos(0, nanosTimeout))
throw new TimeoutException();
}
private void innerSetTrue() {
for (;;) {
int s = getState();
if (s == TRUE) {
return; // 直接退出
}
if (compareAndSetState(s, TRUE)) {// cas更新状态,避免并发更新true操作
releaseShared(0);// 释放一下锁对象,唤醒一下阻塞的Thread
}
}
}
private void innerSetFalse() {
for (;;) {
int s = getState();
if (s == FALSE) {
return; //直接退出
}
if (compareAndSetState(s, FALSE)) {//cas更新状态,避免并发更新false操作
setState(FALSE);
}
}
}
}
}
3. 相关说明:
4. 测试类:
package com.king.lock;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import org.apache.zookeeper.KeeperException;
/**
* 分布式锁测试
* @author taomk
* @version 1.0
* @since 15-11-19 上午11:48
*/
public class DistributedLockTest {
public static void main(String [] args) {
ExecutorService executor = Executors.newCachedThreadPool();
final int count = 50;
final CountDownLatch latch = new CountDownLatch(count);
for (int i = 0; i < count; i++) {
final DistributedLock node = new DistributedLock("/locks");
executor.submit(new Runnable() {
public void run() {
try {
Thread.sleep(1000);
// node.tryLock(); // 无阻塞获取锁
node.lock(); // 阻塞获取锁
Thread.sleep(100);
System.out.println("id: " + node.getId() + " is leader: " + node.isOwner());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (KeeperException e) {
e.printStackTrace();
} catch (Exception e) {
e.printStackTrace();
} finally {
latch.countDown();
try {
node.unlock();
} catch (KeeperException e) {
e.printStackTrace();
}
}
}
});
}
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
executor.shutdown();
}
}
控制台输出:
id: x-239027745716109354-0000000248 is leader: true
id: x-22854963329433645-0000000249 is leader: true
id: x-22854963329433646-0000000250 is leader: true
id: x-166970151413415997-0000000251 is leader: true
id: x-166970151413415998-0000000252 is leader: true
id: x-166970151413415999-0000000253 is leader: true
id: x-166970151413416000-0000000254 is leader: true
id: x-166970151413416001-0000000255 is leader: true
id: x-166970151413416002-0000000256 is leader: true
id: x-22854963329433647-0000000257 is leader: true
id: x-239027745716109355-0000000258 is leader: true
id: x-166970151413416003-0000000259 is leader: true
id: x-94912557367427124-0000000260 is leader: true
id: x-22854963329433648-0000000261 is leader: true
id: x-239027745716109356-0000000262 is leader: true
id: x-239027745716109357-0000000263 is leader: true
id: x-166970151413416004-0000000264 is leader: true
id: x-239027745716109358-0000000265 is leader: true
id: x-239027745716109359-0000000266 is leader: true
id: x-22854963329433649-0000000267 is leader: true
id: x-22854963329433650-0000000268 is leader: true
id: x-94912557367427125-0000000269 is leader: true
id: x-22854963329433651-0000000270 is leader: true
id: x-94912557367427126-0000000271 is leader: true
id: x-239027745716109360-0000000272 is leader: true
id: x-94912557367427127-0000000273 is leader: true
id: x-94912557367427128-0000000274 is leader: true
id: x-166970151413416005-0000000275 is leader: true
id: x-94912557367427129-0000000276 is leader: true
id: x-166970151413416006-0000000277 is leader: true
id: x-94912557367427130-0000000278 is leader: true
id: x-94912557367427131-0000000279 is leader: true
id: x-239027745716109361-0000000280 is leader: true
id: x-239027745716109362-0000000281 is leader: true
id: x-166970151413416007-0000000282 is leader: true
id: x-94912557367427132-0000000283 is leader: true
id: x-22854963329433652-0000000284 is leader: true
id: x-166970151413416008-0000000285 is leader: true
id: x-239027745716109363-0000000286 is leader: true
id: x-239027745716109364-0000000287 is leader: true
id: x-166970151413416009-0000000288 is leader: true
id: x-166970151413416010-0000000289 is leader: true
id: x-239027745716109365-0000000290 is leader: true
id: x-94912557367427133-0000000291 is leader: true
id: x-239027745716109366-0000000292 is leader: true
id: x-94912557367427134-0000000293 is leader: true
id: x-22854963329433653-0000000294 is leader: true
id: x-94912557367427135-0000000295 is leader: true
id: x-239027745716109367-0000000296 is leader: true
id: x-239027745716109368-0000000297 is leader: true
#5 升级版# 实现了一个分布式lock后,可以解决多进程之间的同步问题,但设计多线程+多进程的lock控制需求,单jvm中每个线程都和zookeeper进行网络交互成本就有点高了
,所以基于DistributedLock,实现了一个分布式二层锁。
大致原理就是ReentrantLock 和 DistributedLock的一个结合:
单jvm的多线程竞争时,首先需要先拿到第一层的ReentrantLock的锁
;拿到锁之后这个线程再去和其他JVM的线程竞争锁,最后拿到之后锁之后就开始处理任务
;
锁的释放过程是一个反方向的操作,先释放DistributedLock,再释放ReentrantLock
。 可以思考一下,如果先释放ReentrantLock,假如这个JVM ReentrantLock竞争度比较高,一直其他JVM的锁竞争容易被饿死
。
1. DistributedReentrantLock.java源码:多进程+多线程分布式锁
package com.king.lock;
import java.text.MessageFormat;
import java.util.concurrent.locks.ReentrantLock;
import org.apache.zookeeper.KeeperException;
/**
* 多进程+多线程分布式锁
*/
public class DistributedReentrantLock extends DistributedLock {
private static final String ID_FORMAT = "Thread[{0}] Distributed[{1}]";
private ReentrantLock reentrantLock = new ReentrantLock();
public DistributedReentrantLock(String root) {
super(root);
}
public void lock() throws Exception {
reentrantLock.lock();//多线程竞争时,先拿到第一层锁
super.lock();
}
public boolean tryLock() throws Exception {
//多线程竞争时,先拿到第一层锁
return reentrantLock.tryLock() && super.tryLock();
}
public void unlock() throws KeeperException {
super.unlock();
reentrantLock.unlock();//多线程竞争时,释放最外层锁
}
@Override
public String getId() {
return MessageFormat.format(ID_FORMAT, Thread.currentThread().getId(), super.getId());
}
@Override
public boolean isOwner() {
return reentrantLock.isHeldByCurrentThread() && super.isOwner();
}
}
2. 测试代码:
package com.king.lock;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import org.apache.zookeeper.KeeperException;
/**
* @author taomk
* @version 1.0
* @since 15-11-23 下午12:15
*/
public class DistributedReentrantLockTest {
public static void main(String [] args) {
ExecutorService executor = Executors.newCachedThreadPool();
final int count = 50;
final CountDownLatch latch = new CountDownLatch(count);
final DistributedReentrantLock lock = new DistributedReentrantLock("/locks"); //单个锁
for (int i = 0; i < count; i++) {
executor.submit(new Runnable() {
public void run() {
try {
Thread.sleep(1000);
lock.lock();
Thread.sleep(100);
System.out.println("id: " + lock.getId() + " is leader: " + lock.isOwner());
} catch (Exception e) {
e.printStackTrace();
} finally {
latch.countDown();
try {
lock.unlock();
} catch (KeeperException e) {
e.printStackTrace();
}
}
}
});
}
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
executor.shutdown();
}
}
#6 最后# 其实再可以发散一下,实现一个分布式的read/write lock
,也差不多就是这个理了。大致思路:
- 竞争资源标示:
read_自增id , write_自增id
; - 首先按照自增id进行排序,
如果队列的前边都是read标识,对应的所有read都获得锁
。如果队列的前边是write标识,第一个write节点获取锁
; - watcher监听:
read监听距离自己最近的一个write节点的exist
,write监听距离自己最近的一个节点(read或者write节点)
;
来源:oschina
链接:https://my.oschina.net/u/120166/blog/532010