汉诺塔问题【递归】

我的未来我决定 提交于 2021-02-17 22:16:16

汉诺塔问题是一个递归的经典问题。

问题描述:

  有x,y,z三根柱子,在x柱子上有按照大在下,小在上的规则,放着64个套筒,现在要将64个套筒借助柱子y移到柱子z上,且每次只能移动一个套筒,每个柱子上的套筒每时每刻只能按照大套筒在下面,小套筒在上面的规则放着,请问一共要移动多少次才能完成该项任务?

解题思路:

  我们一般会这样想,先把上面63个套筒从x移到y,然后再将第64个从x移到z,最后再将63个从y移动到z,任务完成。

  那么63个套筒怎么移动呢?同样,先把62个套筒从x移到y.。。。。

代码详解:

 1 //一共64个盘子
 2 void hanota(char a, char b, char c,int n) {
 3     
 4     if (n == 1)
 5         cout << a << "->" << c << endl; //将第64个从a,移到c
 6     else {
 7         hanota(a, c, b, n - 1);//先将上面63个盘子移到b
 8         hanota(a, b, c, 1);//然后将第64个从a,移到c
 9         hanota(b, a, c, n - 1);//最后将b上的63个移到c
10     }
11 }
12 
13 
14 void T014() {
15     char a = 'x';
16     char b = 'y';
17     char c = 'z';
18     hanota(a, b, c, 64);
19 
20 }

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!