问题
for java, we can do:
for(int i=100; i>2 ; i=i/2){things to execute}
but what if in python?
is there anything like
for i in range(100:2:something)
could solve this problem?
回答1:
If you need something simple which you can have at hand at several places, you can create a generator function:
def range_divide(start, end, denominator): # TODO: Think for a better name!
value = start
while value > end:
yield value
value /= denominator
and then do
for value in range_divide(100, 2, 2):
# do_stuff
You could even flexibilize this with
def range_flexible(start, end, action):
value = start
while value > end:
yield value
value = action(value)
and do
for value in range_flexible(100, 2, lambda x: x/2):
# do_stuff
or even
def for_loop(start, cont_condition, action):
value = start
while cont_condition(value):
yield value
value = action(value)
for value in for_loop(100, lambda x: x > 2, lambda x: x/2):
# do_stuff
回答2:
There isn't by using a range, you could prepopulate a list and iterate over that but you'd be better off using a while loop.
i = 100
while i > 2:
...
i = i / 2
回答3:
If you want it to look more like a java (or C) for loop, you can define a function that will process the parameters as a string in the C style (at the expense of execution speed):
cachedCFor = dict()
def cFor(params):
if params in cachedCFor: return cachedCFor[params]()
setup,condition,step = [ p.strip() for p in params.split(";") ]
varName = setup.split("=",1)[0].strip()
fn = dict()
code = f"""
def iterator():
{setup}
while {condition}:
yield {varName}
{step}
"""
exec(code,{},fn)
cachedCFor[params] = fn["iterator"]
return fn["iterator"]()
for i in cFor("i=100;i>2;i=i/2"):
print(i)
100
50.0
25.0
12.5
6.25
3.125
Note that the i
variable in the string parameter is internal to the iterator and is not accessible within the for loop's code. We could have written for i in cFor("x=100;x>2;x=x/2")
and still use i
within the loop
That being said, I would still suggest that you embrace Python's way of doing things and not try to reproduce other language's syntax (i.e. use a while statement in this particular case)
for example:
x = 100
while x > 2:
i,x = x,x/2 # using x for the next value allows this to be placed
# at the beginning of the loop (rather than at the end)
# and avoids issues with the continue statement
print(i)
# ... your code ...
Or, you could use a bit of math:
# 6 = int(math.log(100,2))
for i in [100/2**i for i in range(6)]:
print(i)
# Strangely enough, this is actually slower than the cFor() folly
回答4:
Here's another approach to handle special progressions in a cleaner and more generic fashion. It is a class that implements (and hides) internal workings of a loop variable.
class Loop:
def __init__(self,start=0):
self._firstPass = True
self._value = start
@property
def value(self): return self._value
def start(self,initial):
if self._firstPass : self._value = initial
return self
def next(self,nextValue=None):
if nextValue is None : nextValue = self.value + self._increment
if self._firstPass : self._firstPass = False
else : self._value = nextValue
return self
def up(self,by=1):
return self.next(self.value+by)
def down(self,by=1):
return self.next(self.value-by)
def upTo(self,last,by=1):
if self._firstPass: self._firstPass = False
else: self._value += by
return self.value <= last
def downTo(self,last,by=1):
if self._firstPass: self._firstPass = False
else: self._value -= by
return self.value >= last
def loop(self,condition=True):
self._firstPass = False
return condition
def until(self,condition=False):
self._firstPass = False
return not condition
def __getitem__(self,index): return self.value[index]
def __str__(self): return str(self.value)
def __int__(self): return int(self.value)
def __float__(self): return float(self.value)
def __add__(self,other): return self.value + other
def __sub__(self,other): return self.value - other
def __mul__(self,other): return self.value * other
def __matmul__(self,other): return self.value.__matmul__(other)
def __divmod__(self,other): return divmod(self.value,other)
def __pow__(self,other): return self.value ** other
def __truediv__(self,other): return self.value / other
def __floordiv__(self,other): return self.value // other
def __mod__(self,other): return self.value % other
def __lshift__(self,other): return self.value << other
def __rshift__(self,other): return self.value >> other
def __lt__(self,other): return self.value < other
def __le__(self,other): return self.value <= other
def __eq__(self,other): return self.value == other
def __ne__(self,other): return self.value != other
def __gt__(self,other): return self.value > other
def __ge__(self,other): return self.value >= other
def __and__(self,other): return self.value & other
def __or__(self,other): return self.value | other
def __xor__(self,other): return self.value ^ other
def __invert__(self): return -self.value
def __neg__(self): return -self.value
def __pos__(self): return self.value
def __abs__(self): return abs(self.value)
def __radd__(self, other): return other + self.value
def __rsub__(self, other): return other - self.value
def __rmul__(self, other): return other * self.value
def __rmatmul__(self, other): return other.__matmul__(self.value)
def __rtruediv__(self, other): return other / self.value
def __rfloordiv__(self, other): return other // self.value
def __rmod__(self, other): return other % self.value
def __rdivmod__(self, other): return divmod(other,self.value)
def __rpow__(self, other): return other ** self.value
def __rlshift__(self, other): return other << self.value
def __rrshift__(self, other): return other >> self.value
def __rand__(self, other): return other & self.value
def __rxor__(self, other): return other ^ self.value
def __ror__(self, other): return other | self.value
The class is designed to work with the while statement after initializing a loop variable. The loop variable behaves like a normal int (or float, or str, etc.) when used in calculations and conditions. This allows the progression and stop condition to be expressed as you would write them for an ordinary loop variable. The class adds a few method to control the loop process allowing for non-standard increments/decrements:
For example:
i = Loop()
while i.start(100).next(i//2).loop(i>2):
print(i) # 100, 50, 25, 12, 6 ,3
# Note: to use i for assignment or as parameter use +i or i.value
# example1: j = +i
# example2: for j in range(+i)
#
# i.value cannot be modified during the loop
You can also give a start value in the constructor to make the while statement more concise. The class also has an until() function to invert the stop condition:
i = Loop(start=100)
while i.next(i//2).until(i<=2):
print(i) # 100, 50.0, 25.0, 12.5, 6.25, 3.125
Finally there are a couple of helper functions to implement the simpler loops (although a for in
would probably be better in most cases):
i = Loop()
while i.start(1).upTo(10):
print(i) # 1,2,...,9,10
i = Loop()
while i.upTo(100,by=5):
print(i) # 0,5,10,15,20,...,95,100
i = Loop(100)
while i.down(by=5).until(i<20):
print(i) # 100,95,90,...,25,20
来源:https://stackoverflow.com/questions/56444418/is-there-any-method-like-divide-by-or-multiply-by-in-python-range