问题
I want to create a list of variations of applying a function to every element of a list. Here is a quick example of what I mean.
applyVar f [a, b, c]
>> [[(f a), b, c], [a, (f b), c], [a, b, (f c)]]
Essentially It applies a function to each element of a list individually and stores each possible application in an array.
I'm not too sure how to approach a problem like this without using indexes as I have heard they are not very efficient. This is assuming that the function f returns the same type as the input list.
Is there a pre-existing function to get this behavior? If not what would that function be?
回答1:
To see if there's a pre-existing function, first figure out its type. In this case, it's (a -> a) -> [a] -> [[a]]
. Searching for that type on Hoogle only returns a handful of matches, and by inspection, none of them do what you want.
To write it yourself, note that it operates on a list, and the best way to figure out how to write a function on a list is to define it inductively. This means you need to build two cases: one for an empty list, and one for a non-empty list that assumes you already know the answer for its tail:
applyVar f [] = _
applyVar f (x:xs) = _ -- use `applyVar f xs` somehow
Now we just need to fill in the two blanks. For the nil case, it's easy. For the cons case, note that the first sublist starts with f a
, and the rest will all start with a
. Then, note that the tails of the rest look an awful lot like the answer for the tail. From there, the pattern should become clear.
applyVar f [] = []
applyVar f (x:xs) = (f x:xs):map (x:) (applyVar f xs)
And here's a quick demo/test of it:
Prelude> applyVar (+10) [1,2,3]
[[11,2,3],[1,12,3],[1,2,13]]
回答2:
Note that, as is often the case, lens contains some tools that provide this as a special case of some far more abstract tooling.
$ cabal repl -b lens,adjunctions
Resolving dependencies...
GHCi, version 8.10.3: https://www.haskell.org/ghc/ :? for help
> import Control.Lens
> import Control.Comonad.Representable.Store
> let updateEach f = map (peeks f) . holesOf traverse
> :t updateEach
updateEach :: Traversable t => (s -> s) -> t s -> [t s]
> updateEach negate [1..3]
[[-1,2,3],[1,-2,3],[1,2,-3]]
> import qualified Data.Map as M
> updateEach (*3) (M.fromList [('a', 1), ('b', 2), ('c', 4)])
[fromList [('a',3),('b',2),('c',4)],fromList [('a',1),('b',6),('c',4)],fromList [('a',1),('b',2),('c',12)]]
This is honestly way overkill, unless you start needing some of the ways lens
gets more compositional, like so:
> let updateEachOf l f = map (peeks f) . holesOf l
> updateEachOf (traverse . filtered even) negate [1..5]
[[1,-2,3,4,5],[1,2,3,-4,5]]
> updateEachOf (traverse . ix 2) negate [[1,2],[3,4,5],[6,7,8,9],[10]]
[[[1,2],[3,4,-5],[6,7,8,9],[10]],[[1,2],[3,4,5],[6,7,-8,9],[10]]]
But whether you ever end up needing it or not, it's cool to know that the tools exist.
回答3:
Yes. Two functions, inits and tails:
foo :: (a -> a) -> [a] -> [[a]]
foo f xs = [ a ++ [f x] ++ b | a <- inits xs
| (x:b) <- tails xs]
(with ParallelListComp
extension; equivalent to using zip
over two applications of the two functions, to the same input argument, xs
, in the regular list comprehension).
Trying it out:
> foo (100+) [1..5]
[[101,2,3,4,5],[1,102,3,4,5],[1,2,103,4,5],[1,2,3,104,5],[1,2,3,4,105]]
来源:https://stackoverflow.com/questions/66073694/haskell-is-there-a-function-for-creating-every-variation-of-applying-a-function