《Ray Tracing in One Weekend》完结篇
最近课程上机实验,封面图渲染时间也超长,所以写东西就落下了,见谅
这篇之后,我会继续《Ray Tracing The Next Week》,还请多多关注
这几天我在渲染这本书的封面图,封面图还没出,不算结束,刚好安排了10节
今天呢,有两件事:
1.阐述整个工程的文件组织即内容
2.阐述封面,完结
12.1工程文件组织
试过很多方法,问过很多老师,无奈,子类继承实现的父类纯虚函数实在无法和类声明分成两个文件(即声明放于.h,其他实现放在.cpp中),室友说,纯虚函数继承实现和模板很类似
所以,我们在合适的时候使用hpp
在学习过程中,我们遇到了诸如反射、折射之类的函数,它们并不应该属于某个具体子类,或者抽象基类
所以,我把它们写在了泛型3D数学库里面了
C++泛型3D数学库是我们学光线追踪的数学专用库了吧算是
在回头看我们的光线追踪的项目代码
1.工程定义文件
我们之前是在ray这个最基本的类中定义了一些基本的命名,尔后,发现,所有的东西都要用ray::val_type诸如此类的代码去描述光线追踪所用到的一些普遍类型,这个非常麻烦,代码也长,后来,我们将它们移出了ray-class,放在了namespace rt中,但是,仍然放在ray文件中,这个很不合理,所以我们定义了一个RTdef.h,专门用于定义一些光线追踪的常量和命名
/// RTdef.h
// -----------------------------------------------------
// [author] lv
// [begin ] 2019.1.1
// [brief ] the basic concept of rt
// -----------------------------------------------------
#pragma once
#include <lvgm\type_vec\type_vec.h> //https://www.cnblogs.com/lv-anchoret/p/10163085.html
#include <lvgm\opticsfunc.hpp> //https://www.cnblogs.com/lv-anchoret/p/10241904.html
#include <lvgm\randfunc.hpp> //https://www.cnblogs.com/lv-anchoret/p/10241904.html
namespace rt
{
using rtvar = lvgm::precision;
using rtvec = lvgm::vec3<rtvar>;
constexpr static rtvar rtInf() { return static_cast<rtvar>(0x3f3f3f3f); } //最大值
constexpr rtvar π = 3.1415926;
}
2.光线类
/// ray.h
// -----------------------------------------------------
// [author] lv
// [begin ] 2018.12
// [brief ] the ray-class for the ray-tracing project
// from the 《ray tracing in one week》
// -----------------------------------------------------
#pragma once
#include "RTdef.h"
namespace rt
{
class ray
{
public:
ray()
:_a{ rtvec() }
, _b{ rtvec() }
{ }
ray(const rtvec& a, const rtvec& b)
:_a(a)
, _b(b)
{ }
ray(const ray& r)
:_a(r._a)
, _b(r._b)
{ }
inline rtvec origin()const { return _a; }
inline rtvec direction()const { return _b; }
inline rtvec go(const rtvar t)const { return _a + t * _b; }
private:
rtvec _a;
rtvec _b;
};
}
3.相机类
/// camera.h
//https://www.cnblogs.com/lv-anchoret/p/10221058.html
// -----------------------------------------------------
// [author] lv
// [begin ] 2019.1
// [brief ] the camera-class for the ray-tracing project
// from the 《ray tracing in one week》
// -----------------------------------------------------
#pragma once
#include "ray.h"
namespace rt
{
class camera
{
public:
camera(rtvec lookfrom, rtvec lookat, rtvec vup, rtvar vfov, rtvar aspect, rtvar aperture, rtvar focus)
:_eye(lookfrom)
, _lens_radius(aperture / 2)
{
rtvar theta = vfov * π / 180;
rtvar half_height = tan(theta / 2) * focus; //tan(theta/2) = (height/2) / 焦距
rtvar half_width = aspect * half_height;
_w = (lookfrom - lookat).ret_unitization();
_u = cross(vup, _w).ret_unitization();
_v = cross(_w, _u);
//向量运算
_start = _eye - half_width * _u - half_height * _v - focus * _w;//高和宽都乘了焦距,w也要乘,不然公式是错的
_horizontal = 2 * half_width * _u;
_vertical = 2 * half_height * _v;
}
const ray get_ray(const rtvar u, const rtvar v)const
{
rtvec rd = rtvec(_lens_radius * lvgm::random_unit_plane());
rtvec offset = _u * rd.x() + _v * rd.y();
return ray{ _eye + offset, _start + u*_horizontal + v*_vertical - (_eye + offset) };
}
const ray get_ray(const lvgm::vec2<rtvar>& para)const { return get_ray(para.u(), para.v()); }
inline const rtvec& eye()const { return _eye; }
inline const rtvec& start()const { return _start; }
inline const rtvec& horizontal()const { return _horizontal; }
inline const rtvec& vertical()const { return _vertical; }
inline const rtvec& u()const { return _u; }
inline const rtvec& v()const { return _v; }
inline const rtvec& w()const { return _w; }
inline const rtvar lens_r()const { return _lens_radius; }
private:
rtvec _u;
rtvec _v;
rtvec _w;
rtvec _eye;
rtvec _start; //left-bottom
rtvec _horizontal;
rtvec _vertical;
rtvar _lens_radius; //the radius of lens
};
}
4.碰撞相交部分
有一个碰撞相交基类
/// intersect.h
//https://www.cnblogs.com/lv-anchoret/p/10190092.html
// -----------------------------------------------------
// [author] lv
// [begin ] 2018.12
// [brief ] the intersect-class for the ray-tracing project
// from the 《ray tracing in one week》
// -----------------------------------------------------
#pragma once
namespace rt
{
class material;
struct hitInfo
{
lvgm::precision _t; //ray 中的系数t
rtvec _p; //相交点、撞击点
rtvec _n; //_p点的表面法线
material* materialp; //材质
};
class intersect
{
public:
intersect() { }
/*
@brief: 撞击函数,求取撞击点相关记录信息
@param: sight->视线
系数t的上下界->筛选撞击点
rec->返回撞击点信息
@retur: 是否存在合法撞击点
*/
virtual bool hit(const ray& sight, rtvar t_min, rtvar t_max, hitInfo& rec)const = 0;
virtual ~intersect() { }
};
}
后面有一个子类intersections是用于处理一组碰撞相交的类,类比于容器
/// intersections.h
// https://www.cnblogs.com/lv-anchoret/p/10190092.html
// -----------------------------------------------------
// [author] lv
// [begin ] 2018.12
// [brief ] the intersections-class for the ray-tracing project
// from the 《ray tracing in one week》
// -----------------------------------------------------
#pragma once
namespace rt
{
class intersections :public intersect
{
public:
intersections() { }
intersections(intersect** list, size_t n) :_list(list), _size(n) { }
virtual bool hit(const ray& sight, rtvar t_min, rtvar t_max, hitInfo& rec)const override;
private:
intersect** _list;
size_t _size;
};
bool intersections::hit(const ray& sight, rtvar t_min, rtvar t_max, hitInfo& rec)const
{
hitInfo t_rec;
bool hitSomething = false;
rtvar far = t_max; //刚开始可以看到无限远
for (int i = 0; i < _size; ++i)
{
if (_list[i]->hit(sight, t_min, far, t_rec))
{
hitSomething = true;
far = t_rec._t; //将上一次的最近撞击点作为视线可达最远处
rec = t_rec;
}
}
return hitSomething;
}
}
还有一个子类sphere是一种几何体用来做自身的碰撞检测的,之后,我们可能还会加入心形几何体类
/// sphere.h
// https://www.cnblogs.com/lv-anchoret/p/10190092.html
// -----------------------------------------------------
// [author] lv
// [begin ] 2018.1.1
// [brief ] the sphere-class for the ray-tracing project
// from the 《ray tracing in one week》
// -----------------------------------------------------
#pragma once
namespace rt
{
class sphere :public intersect
{
public:
sphere() { }
/*
@para1: 球心坐标
@para2: 球半径
@para3: 材质
*/
sphere(const rtvec& h, rtvar r, material* ma) :_heart(h), _radius(r), _materialp(ma) { }
~sphere() { if (_materialp) delete _materialp; }
virtual bool hit(const ray& sight, rtvar t_min, rtvar t_max, hitInfo& rec)const override;
inline const rtvar r()const { return _radius; }
inline const rtvec& heart()const { return _heart; }
inline rtvar& r() { return _radius; }
inline rtvec& heart() { return _heart; }
private:
rtvec _heart;
rtvar _radius;
material* _materialp;
};
bool sphere::hit(const ray& sight, rtvar t_min, rtvar t_max, hitInfo& rec)const
{
rtvec trace = sight.origin() - _heart;
rtvar a = dot(sight.direction(), sight.direction());
rtvar b = 2.0 * dot(trace, sight.direction());
rtvar c = dot(trace, trace) - _radius * _radius;
rtvar delt = b*b - 4.0*a*c;
if (delt > 0)
{
rec.materialp = _materialp;
rtvar x = (-b - sqrt(delt)) / (2.0*a);
if (x < t_max && x > t_min)
{
rec._t = x;
rec._p = sight.go(rec._t);
rec._n = (rec._p - _heart) / _radius;
return true;
}
x = (-b + sqrt(delt)) / (2.0*a);
if (x < t_max && x > t_min)
{
rec._t = x;
rec._p = sight.go(x);
rec._n = (rec._p - _heart) / _radius;
return true;
}
}
return false;
}
}
一个总文件
/// RThit.h
// https://www.cnblogs.com/lv-anchoret/p/10190092.html
// -----------------------------------------------------
// [author] lv
// [begin ] 2019.1
// [brief ] some intersects
// intersections
// sphere
// heart
// -----------------------------------------------------
#pragma once
#include "ray.h"
#include "intersect.h"
#include "sphere.hpp"
#include "intersections.hpp"
5.材质类
材质有一个基类和三个子类
/// material.h
// -----------------------------------------------------
// [author] lv
// [begin ] 2018.12
// [brief ] the material-class for the ray-tracing project
// from the 《ray tracing in one week》
// -----------------------------------------------------
#pragma once
namespace rt
{
//abstract basic class
class material
{
public:
/*
@brief: produce a scattered ray
@param: InRay -> Incident light
info -> the information of intersect-point(hit-point)
attenuation -> when scattered, how much the ray should be attenuated by tis reflectance R
scattered -> as we talk, it is a new sight; or
it is the scattered ray with the intersect-point
@retur: the function calculate a scattered ray or not
*/
virtual bool scatter(const ray& InRay, const hitInfo& info, rtvec& attenuation, ray& scattered)const = 0;
};
}
/// diffuse.hpp
// https://www.cnblogs.com/lv-anchoret/p/10198423.html
// -----------------------------------------------------
// [author] lv
// [begin ] 2018.12
// [brief ] one of the materials
// -----------------------------------------------------
#pragma once
namespace rt
{
//diffuse material
class lambertian : public material
{
public:
lambertian(const rtvec& a) :_albedo(a) { }
bool scatter(const ray& rIn, const hitInfo& info, rtvec& attenuation, ray& scattered)const override
{
rtvec target = info._p + info._n + lvgm::random_unit_sphere();
scattered = ray{ info._p, target - info._p };
attenuation = _albedo;
return true;
}
protected:
rtvec _albedo;
};
}
/// metal.hpp
// https://www.cnblogs.com/lv-anchoret/p/10206773.html
// -----------------------------------------------------
// [author] lv
// [begin ] 2018.12
// [brief ] one of the materials
// -----------------------------------------------------
#pragma once
namespace rt
{
//metal material
class metal :public material
{
public:
metal(const rtvec& a, const rtvar f = 0.) :_albedo(a)
{
if (f < 1 && f >= 0)_fuzz = f;
else _fuzz = 1;
}
virtual bool scatter(const ray& rIn, const hitInfo& info, rtvec& attenuation, ray& scattered)const
{
rtvec target = reflect(rIn.direction().ret_unitization(), info._n);
scattered = ray{ info._p, target + _fuzz * lvgm::random_unit_sphere() };
attenuation = _albedo;
return dot(scattered.direction(), info._n) != 0;
}
inline static rtvec reflect(const rtvec& in, const rtvec& n) { return in - 2 * dot(in, n)*n; }
protected:
rtvec _albedo;
rtvar _fuzz;
};
}
/// dielectric.hpp
// https://www.cnblogs.com/lv-anchoret/p/10217719.html
// -----------------------------------------------------
// [author] lv
// [begin ] 2019.1
// [brief ] one of the materials
// -----------------------------------------------------
#pragma once
namespace rt
{
class dielectric :public material
{
public:
dielectric(const rtvar RI) :_RI(RI) { }
virtual bool scatter(const ray& InRay, const hitInfo& info, rtvec& attenuation, ray& scattered)const override;
protected:
rtvar _RI;
inline rtvar schlick(const rtvar cosine)const;
};
bool dielectric::scatter(const ray& InRay, const hitInfo& info, rtvec& attenuation, ray& scattered)const
{
rtvec outward_normal;
rtvec refracted;
rtvec reflected = reflect(InRay.direction(), info._n);
rtvar eta;
rtvar reflect_prob;
rtvar cos;
attenuation = rtvec(1., 1., 1.);
if (dot(InRay.direction(), info._n) > 0)
{
outward_normal = -info._n;
eta = _RI;
cos = _RI * dot(InRay.direction(), info._n) / InRay.direction().normal();
}
else
{
outward_normal = info._n;
eta = 1.0 / _RI;
cos = -dot(InRay.direction(), info._n) / InRay.direction().normal();
}
if (refract(InRay.direction(), outward_normal, eta, refracted))
reflect_prob = schlick(cos); //如果有折射,计算反射系数
else
reflect_prob = 1.0; //如果没有折射,那么为全反射
if (lvgm::rand01() < reflect_prob)
scattered = ray(info._p, reflected);
else
scattered = ray(info._p, refracted);
return true;
}
inline rtvar dielectric::schlick(const rtvar cosine)const
{
rtvar r0 = (1. - _RI) / (1. + _RI);
r0 *= r0;
return r0 + (1 - r0)*pow((1 - cosine), 5);
}
}
总文件
/// RTmaterial.h
// -----------------------------------------------------
// [author] lv
// [begin ] 2019.1
// [brief ] some materials
// diffuse
// metal
// dielectric
// -----------------------------------------------------
#pragma once
#include "ray.h"
#include "intersect.h"
#include "material.h"
#include "diffuse.hpp"
#include "metal.hpp"
#include "dielectric.hpp"
我们所有的文件就写完了
12.2封面完结
这个图让我学会了分段渲染。。。
这个图非常好看,于是乎,整了一个600*400的,整整渲染了两天(....),内心是崩溃的
我试过并发编程,结果效果不好(自己也不怎么会上锁。。。)
所以,就只能单线程处理,时间超过十个小时左右吧,VS那个时间过程诊断框就坏死了。。。
有时候,不能一直渲染,这个时候,被迫结束后,只需要读取已有文件的行数,然后计算出渲染了多少个点了,然后在渲染的双重for循环中从下一个点开始渲染写入文件即可,就可以随时随地想停就停,想渲染就渲染,因为图像本事就是一个一个像素点,我们只需要24w个点的文件数据即可,你也可以并发写入多个文件,最后拼在一起
我们采用的相机参数是这样的
据说是官方的,我也不清楚
还有一个文章写得非常好,是写相机的参数测试的,大家可以阅读一下,对相机的参数有一个更直观深入的了解
因为这个图实在是渲染了好久,所以也没有出一些其他的效果图,可能之后会更,大家可以自己设置球体以及相机,欢迎在评论区发出你的渲染图~
下面是代码:
#define LOWPRECISION
#include <fstream>
#include "RTmaterial.h"
#include "RThit.h"
#include "camera.h"
#define stds std::
using namespace rt;
rtvec lerp(const ray& sight, intersect* world, int depth)
{
hitInfo info;
if (world->hit(sight, (rtvar)0.001, rtInf(), info))
{
ray scattered;
rtvec attenuation;
if (depth < 50 && info.materialp->scatter(sight, info, attenuation, scattered))
return attenuation * lerp(scattered, world, depth + 1);
else
return rtvec(0, 0, 0);
}
else
{
rtvec unit_dir = sight.direction().ret_unitization();
rtvar t = 0.5*(unit_dir.y() + 1.);
return (1. - t)*rtvec(1., 1., 1.) + t*rtvec(0.5, 0.7, 1.0);
}
}
intersect* random_sphere()
{
int cnt = 500;
intersect **list = new intersect*[cnt + 1];
list[0] = new sphere(rtvec(0, -1000, 0), 1000, new lambertian(rtvec(0.5, 0.5, 0.5)));
int size = 1;
for (int a = -11; a < 11; ++a)
for (int b = -11; b < 11; ++b)
{
rtvar choose_mat = lvgm::rand01();
rtvec center(a + 0.9 * lvgm::rand01(), 0.2, b + 0.9*lvgm::rand01());
if ((center - rtvec(4, 0.2, 0)).normal()>0.9)
{
if (choose_mat < 0.75)
{
list[size++] = new sphere(center, 0.2, new lambertian(rtvec(lvgm::rand01()*lvgm::rand01(), lvgm::rand01()*lvgm::rand01(), lvgm::rand01()*lvgm::rand01())));
}
else if (choose_mat < 0.9)
{
list[size++] = new sphere(center, 0.2, new metal(rtvec(0.5*(1 + lvgm::rand01()), 0.5*(1 + lvgm::rand01()), 0.5*(1 + lvgm::rand01())), 0.5*lvgm::rand01()));
}
else
{
list[size++] = new sphere(center, 0.2, new dielectric(1.5));
}
}
}
list[size++] = new sphere(rtvec(0, 1, 0), 1.0, new dielectric(1.5));
list[size++] = new sphere(rtvec(-4, 1, 0), 1.0, new lambertian(rtvec(0.4, 0.2, 0.1)));
list[size++] = new sphere(rtvec(4, 1, 0), 1.0, new metal(rtvec(0.7, 0.6, 0.5), 0.));
return new intersections(list, size);
}
void build_12_1()
{
stds ofstream file("graph12-1.ppm");
size_t W = 200, H = 120, sample = 100;
if (file.is_open())
{
file << "P3\n" << W << " " << H << "\n255\n" << stds endl;
intersect* world = random_sphere();
rtvec lookfrom(13, 2, 3);
rtvec lookat(0, 0, 0);
float dist_to_focus = (lookfrom - lookat).normal();
float aperture = 0.0;
camera cma(lookfrom, lookat, rtvec(0, 1, 0), 20, rtvar(W) / rtvar(H), aperture, 0.7*dist_to_focus);
for (int y = H - 1; y >= 0; --y)
for (int x = 0; x < W; ++x)
{
rtvec color;
for (int cnt = 0; cnt < sample; ++cnt)
{
lvgm::vec2<rtvar> para{
(lvgm::rand01() + x) / W,
(lvgm::rand01() + y) / H };
color += lerp(cma.get_ray(para), world, 0);
}
color /= sample;
color = rtvec(sqrt(color.r()), sqrt(color.g()), sqrt(color.b())); //gamma 校正
int r = int(255.99 * color.r());
int g = int(255.99 * color.g());
int b = int(255.99 * color.b());
file << r << " " << g << " " << b << stds endl;
}
file.close();
if (world)delete world;
stds cout << "complished" << stds endl;
}
else
stds cerr << "open file error" << stds endl;
}
int main()
{
build_12_1();
}
感谢您的阅读,生活愉快~
来源:oschina
链接:https://my.oschina.net/u/4411698/blog/3683262