Spark Data set transformation to array [duplicate]

↘锁芯ラ 提交于 2021-02-11 18:16:14

问题


I have a dataset like below; with values of col1 repeating multiple times and unique values of col2. This original dataset can almost a billion rows, so I do not want to use collect or collect_list as it will not scale-out for my use case.

Original Dataset:

+---------------------|
|    col1  |    col2  |
+---------------------|
|    AA|    11        |
|    BB|    21        |
|    AA|    12        |
|    AA|    13        |
|    BB|    22        |
|    CC|    33        |
+---------------------|

I want to transform the dataset into the following array format. newColumn as an array of col2.

Transformed Dataset:

+---------------------|
|col1  |     newColumn|
+---------------------|
|    AA|    [11,12,13]|
|    BB|    [21,22]   |
|    CC|    [33]      |
+---------------------|

I have seen this solution, but it uses collect_list and will not scale-out on big datasets.


回答1:


Using the inbuilt functions of spark are always the best way. I see no problem in using the collect_list function. As long as you have sufficient memory, this would be the best way. One way of optimizing your job would be to save your data as parquet , bucket it by column A and saving it as a table. Better would be to also partition it by some column that evenly distributes data.

For example,

df_stored = #load your data from csv or parquet or any format'
spark.catalog.setCurrentDatabase(database_name)
df_stored.write.mode("overwrite").format("parquet").partitionBy(part_col).bucketBy(10,"col1").option("path",savepath).saveAsTable(tablename)
df_analysis = spark.table(tablename)
df_aggreg = df_analysis.groupby('col1').agg(F.collect_list(col('col2')))

This would speeden up the aggregation and avoid a lot of shuffle. try it out




回答2:


  1. Load your dataframe
  2. Group by col1
  3. Aggregate col2 to a list using collect_list
import org.apache.spark.sql.functions

object GroupToArray {

  def main(args: Array[String]): Unit = {

    val spark = Constant.getSparkSess

    import spark.implicits._

    //Load your dataframe
    val df = List(("AA", "11"),
      ("BB", "21"),
      ("AA", "12"),
      ("AA", "13"),
      ("BB", "22"),
      ("CC", "33")).toDF("col1","col2")

    //Group by 'col1'
    df.groupBy("col1")
      //agregate on col2 and combine it to a list
    .agg(functions.collect_list("col2").as("newColumn"))
      .show()
  }

}


来源:https://stackoverflow.com/questions/62546988/spark-data-set-transformation-to-array

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!