问题
I have two dataframes where multiple operations are to be implemented, for example:
old_DF
id col1 col2 col3
-------------------------
1 aaa
2 bbb 123
new_DF
id col1 col2 col3
-------------------------
1 xxx 999
2 xxx kkk
The following operations need to be performed on these dataframes:
- Merging the two dataframes
- Replacing only the blanks (NAs) cells in the old_DF with corresponding values from new_DF
- Cells from both the dataframes where the values are contradicting should be reported in a new dataframe
Desired results:
updated_df
id col1 col2 col3
-------------------------
1 aaa xxx 999
2 xxx bbb 123
conflicts_df
id col1 col2 col3
-------------------------
2 bbb
2 kkk
I can use .append()
method to join the two dataframes and I guess one can use .bfil()
or .ffil()
methods to fill in the missing values. But I am unsuccessful with both .bfil()
and .ffil()
. I have tried df.groupby('id').apply(lambda x: x.ffill().bfill()).drop_duplicates()
but I do not get the desired results. Additionally, I do not understand how to perform step 3 mentioned above. Is there anyone who can help with this problem?
回答1:
setting up:
old_df = pd.DataFrame([
[1, 'aaa', pd.NA, pd.NA],
[2, pd.NA, 'bbb', 123]],
columns=['id', 'col1', 'col2', 'col3'])
new_df = pd.DataFrame([
[1, pd.NA, 'xxx', 999],
[2, 'xxx', 'kkk', pd.NA]],
columns=['id', 'col1', 'col2', 'col3'])
Use combine_first to get the updated_df
, setting id
as the index
old_df = old_df.set_index('id')
new_df = new_df.set_index('id')
updated_df = old_df.combine_first(new_df)
# updated_df outputs:
# (reset the id if necessary)
col1 col2 col3
id
1 aaa xxx 999
2 xxx bbb 123
generate a dataframe of masks
using boolean logic, checking that both the old & new frames have values in a given cell & that the values differ, and pick cells from both old & new using the mask where any row in the mask is True
mask = pd.notnull(new_df) & ~old_df.eq(new_df) & pd.notnull(old_df)
conflicts_df = pd.concat([old_df[mask], new_df[mask]]).dropna(how='all')
# conflicts_df outputs
col1 col2 col3
id
2 NaN bbb NaN
2 NaN kkk NaN
来源:https://stackoverflow.com/questions/61617200/multiple-merge-operations-on-two-dataframes-using-pandas