Return Similarity Matrix From Two Variable-length Arrays of Strings (scipy option?)

大兔子大兔子 提交于 2021-02-10 12:29:06

问题


Say I have two arrays:

import numpy as np
arr1 = np.array(['faucet', 'faucets', 'bath', 'parts', 'bathroom'])
arr2 = np.array(['faucett', 'faucetd', 'bth', 'kichen'])

and I want to compute the similarity of the strings in arr2 to the strings in arr1.

arr1 is an array of correctly spelled words.

arr2 is an array of words not recognized in a dictionary of words.

I want to return a matrix which will then be turned into a pandas DataFrame.

My current solution (credit):

from scipy.spatial.distance import pdist, squareform
from Levenshtein import ratio
arr3 = np.concatenate((arr1, arr2)).reshape(-1,1)
matrix = squareform(pdist(arr3, lambda x,y: ratio(x[0], y[0])))
df = pd.DataFrame(matrix, index=arr3.ravel(), columns=arr3.ravel())

Output:

            faucet   faucets      bath     parts  bathroom   faucett  \
faucet    0.000000  0.923077  0.400000  0.363636  0.285714  0.923077   
faucets   0.923077  0.000000  0.363636  0.500000  0.266667  0.857143   
bath      0.400000  0.363636  0.000000  0.444444  0.666667  0.363636   
parts     0.363636  0.500000  0.444444  0.000000  0.307692  0.333333   
bathroom  0.285714  0.266667  0.666667  0.307692  0.000000  0.266667   
faucett   0.923077  0.857143  0.363636  0.333333  0.266667  0.000000   
faucetd   0.923077  0.857143  0.363636  0.333333  0.266667  0.857143   
bth       0.222222  0.200000  0.857143  0.250000  0.545455  0.200000   
kichen    0.333333  0.307692  0.200000  0.000000  0.142857  0.307692   

           faucetd       bth    kichen  
faucet    0.923077  0.222222  0.333333  
faucets   0.857143  0.200000  0.307692  
bath      0.363636  0.857143  0.200000  
parts     0.333333  0.250000  0.000000  
bathroom  0.266667  0.545455  0.142857  
faucett   0.857143  0.200000  0.307692  
faucetd   0.000000  0.200000  0.307692  
bth       0.200000  0.000000  0.222222  
kichen    0.307692  0.222222  0.000000

The problem with this solution: I waste time computing pairwise distance ratios on words I already know are correctly spelled.

What I'd like is to hand a function arr1 and arr2 (which can be different lengths!) and output a matrix (not necessarily square) with the ratios.

The result would look like this (without the computational overhead):

>>> df.drop(index=arr1, columns=arr2)

           faucet   faucets      bath     parts  bathroom
faucett  0.923077  0.857143  0.363636  0.333333  0.266667
faucetd  0.923077  0.857143  0.363636  0.333333  0.266667
bth      0.222222  0.200000  0.857143  0.250000  0.545455
kichen   0.333333  0.307692  0.200000  0.000000  0.142857

回答1:


I think you're looking for cdist:

import pandas as pd
import numpy as np
from scipy.spatial.distance import cdist
from Levenshtein import ratio

arr1 = np.array(['faucet', 'faucets', 'bath', 'parts', 'bathroom'])
arr2 = np.array(['faucett', 'faucetd', 'bth', 'kichen'])

matrix = cdist(arr2.reshape(-1, 1), arr1.reshape(-1, 1), lambda x, y: ratio(x[0], y[0]))
df = pd.DataFrame(data=matrix, index=arr2, columns=arr1)

Result:

           faucet   faucets      bath     parts  bathroom
faucett  0.923077  0.857143  0.363636  0.333333  0.266667
faucetd  0.923077  0.857143  0.363636  0.333333  0.266667
bth      0.222222  0.200000  0.857143  0.250000  0.545455
kichen   0.333333  0.307692  0.200000  0.000000  0.142857


来源:https://stackoverflow.com/questions/50648860/return-similarity-matrix-from-two-variable-length-arrays-of-strings-scipy-optio

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!