问题
So I have around 13 years of stock market data of daily low high open close. The problem is the markets are closed sometimes in between and hence Monday to Friday might not appear continuously sometimes. Look below
Date | Day | Open | High | Low | Close | Adjusted Close | ||
---|---|---|---|---|---|---|---|---|
0 | 17-09-2007 | Monday | 6898 | 6977.2 | 6843 | 6897.1 | 6897.100098 | |
1 | 18-09-2007 | Tuesday | 6921.15 | 7078.95 | 6883.6 | 7059.65 | 7059.649902 | |
2 | 19-09-2007 | Wednesday | 7111 | 7419.35 | 7111 | 7401.85 | 7401.850098 | |
3 | 20-09-2007 | Thursday | 7404.95 | 7462.9 | 7343.6 | 7390.15 | 7390.149902 | |
4 | 21-09-2007 | Friday | 7378.3 | 7506.35 | 7367.15 | 7464.5 | 7464.5 | |
5 | 25-09-2007 | Tuesday | 7658.5 | 7694.25 | 7490.2 | 7629.15 | 7629.149902 | |
7 | 26-09-2007 | Wednesday | 7647.1 | 7829.85 | 7591.8 | 7755.9 | 7755.899902 | |
8 | 28-09-2007 | Friday | 7838.25 | 8082.85 | 7836.05 | 8042.2 | 8042.200195 | |
9 | 01-10-2007 | Monday | 8008.55 | 8085.15 | 7913.3 | 7987.5 | 7987.5 | |
10 | 03-10-2007 | Wednesday | 8029.8 | 8235.8 | 7820.25 | 8097.9 | 8097.899902 | |
11 | 04-10-2007 | Thursday | 8083.3 | 8086.7 | 7828.65 | 8035.9 | 8035.899902 | |
12 | 05-10-2007 | Friday | 8038.1 | 8066.55 | 7789.7 | 7845.25 | 7845.25 | |
13 | 08-10-2007 | Monday | 7853.15 | 7935.45 | 7516.45 | 7626.4 | 7626.399902 | |
14 | 09-10-2007 | Tuesday | 7580.9 | 7916.45 | 7535.05 | 7895.85 | 7895.850098 | |
15 | 10-10-2007 | Wednesday | 7960.65 | 8081.05 | 7907.35 | 8030.65 | 8030.649902 | |
16 | 11-10-2007 | Thursday | 8054.3 | 8177.75 | 8005.5 | 8158.8 | 8158.799805 | |
17 | 15-10-2007 | Monday | 7962.55 | 8306.35 | 7962.55 | 8286.3 | 8286.299805 | |
18 | 16-10-2007 | Tuesday | 8361.4 | 8491.65 | 8240.3 | 8452.2 | 8452.200195 | |
19 | 17-10-2007 | Wednesday | 8071.55 | 8218.1 | 7641.5 | 8099.9 | 8099.899902 | |
20 | 18-10-2007 | Thursday | 8055.15 | 8192.45 | 7519.7 | 7608.75 | 7608.75 | |
21 | 19-10-2007 | Friday | 7637.4 | 7718.9 | 7279.3 | 7423.8 | 7423.799805 |
I want to have uniform data that has the same pattern from Monday to Friday. Hence wherever a day in between is missing, I want to replace its value with previous day values. For eg., between no 4 and 5, I would add 24-09-2007 Monday and then all other values copied from no 4 (Friday). Sometimes it can happen that consecutively 2 days are missing in that case again the last value has to be copied. for eg if both Monday and Tuesday were missing, I'd add Monday, copy Friday's data, then add Tuesday and copy Monday's data. How do I do it using python pandas? Remember there are 13 years of data so there will be leap years, year change, etc.
回答1:
process:
- set index of the date
- resample the dataframe with 'D'
- drop the day is Sat and Sun
- fillna with 'ffill'
# Data Index should be timeSeries
df['Date'] = pd.to_datetime(df['Date'], format='%d-%m-%Y')
# upsample
dfn = df.set_index('Date').resample('D').asfreq()
# covert Date to Monday .. Sunday
dfn['Day'] = dfn.index.strftime('%A')
# drop Day in ['Saturday', 'Sunday']
cond = dfn['Day'].isin(['Saturday', 'Sunday'])
dfn = dfn[~cond].fillna(method='ffill').reset_index()
output:
Date Day Open High Low Close Adjusted Close
0 2007-09-17 Monday 6898.00 6977.20 6843.00 6897.10 6897.100098
1 2007-09-18 Tuesday 6921.15 7078.95 6883.60 7059.65 7059.649902
2 2007-09-19 Wednesday 7111.00 7419.35 7111.00 7401.85 7401.850098
3 2007-09-20 Thursday 7404.95 7462.90 7343.60 7390.15 7390.149902
4 2007-09-21 Friday 7378.30 7506.35 7367.15 7464.50 7464.500000
5 2007-09-24 Monday 7378.30 7506.35 7367.15 7464.50 7464.500000
6 2007-09-25 Tuesday 7658.50 7694.25 7490.20 7629.15 7629.149902
7 2007-09-26 Wednesday 7647.10 7829.85 7591.80 7755.90 7755.899902
8 2007-09-27 Thursday 7647.10 7829.85 7591.80 7755.90 7755.899902
9 2007-09-28 Friday 7838.25 8082.85 7836.05 8042.20 8042.200195
10 2007-10-01 Monday 8008.55 8085.15 7913.30 7987.50 7987.500000
11 2007-10-02 Tuesday 8008.55 8085.15 7913.30 7987.50 7987.500000
12 2007-10-03 Wednesday 8029.80 8235.80 7820.25 8097.90 8097.899902
13 2007-10-04 Thursday 8083.30 8086.70 7828.65 8035.90 8035.899902
14 2007-10-05 Friday 8038.10 8066.55 7789.70 7845.25 7845.250000
15 2007-10-08 Monday 7853.15 7935.45 7516.45 7626.40 7626.399902
16 2007-10-09 Tuesday 7580.90 7916.45 7535.05 7895.85 7895.850098
17 2007-10-10 Wednesday 7960.65 8081.05 7907.35 8030.65 8030.649902
18 2007-10-11 Thursday 8054.30 8177.75 8005.50 8158.80 8158.799805
19 2007-10-12 Friday 8054.30 8177.75 8005.50 8158.80 8158.799805
20 2007-10-15 Monday 7962.55 8306.35 7962.55 8286.30 8286.299805
21 2007-10-16 Tuesday 8361.40 8491.65 8240.30 8452.20 8452.200195
22 2007-10-17 Wednesday 8071.55 8218.10 7641.50 8099.90 8099.899902
23 2007-10-18 Thursday 8055.15 8192.45 7519.70 7608.75 7608.750000
24 2007-10-19 Friday 7637.40 7718.90 7279.30 7423.80 7423.799805
来源:https://stackoverflow.com/questions/65609839/add-missing-day-rows-in-stock-market-data-to-maintain-continuity-in-pandas-dataf