Update dash table by selecting points on scatter plot

十年热恋 提交于 2021-02-08 05:42:30

问题


I am working on a dash dashboard. Here is my code:

# IMPORT SECTION
import dash
import dash_table
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output
import plotly.graph_objs as go
import numpy as np
import pandas as pd
from math import ceil
from matplotlib.cm import Set3


# INPUT DATA
n = 7
d_min = 0.2
d_max = 0.8
d_step = 0.1
N_min = 2000
N_max = 8000
N_step = 1000
D = 40
h = 20
dataframe_file = 'data.xlsx'


# COLOR AND FONT DEFINITION
grey = '#e0e1f5'
black = '#212121'
scatter_colors = ['#' + ''.join(['{:02x}'.format(int(255*Set3(i)[j])) for j in range(3)]) for i in range(n)]
fontsize = 18
fontfamily = 'Arial, sans-serif'


# READ CSV DATA
df = pd.read_excel(dataframe_file)


# CREATE DATA FOR DASH DATATABLE
df_scatter_colors = ceil(len(df) / len(scatter_colors)) * scatter_colors
df_scatter_colors = df_scatter_colors[:len(df)]
df.insert(loc = 0, column = 'COLOR', value = df_scatter_colors)

headers = [{"name": i, "id": i} for i in df.columns]

table = df.to_dict('records')

table_colors = [{'if': {'row_index': i, 'column_id': 'COLOR'},
                 'background-color': df.iloc[i]['COLOR'],
                 'color': df.iloc[i]['COLOR']} for i in range(df.shape[0])]


# CREATE DATA AND LAYOUT FOR THE SCATTERPLOT
x_jitter = 0.05 * N_step * np.random.randn(len(df))
y_jitter = 0.05 * d_step * 1000 * np.random.randn(len(df))
data = [go.Scatter(x = df['NUMBER'] + x_jitter,
                   y = df['DIAMETER'] + y_jitter,
                   text = df['PRODUCT'],
                   mode = 'markers',
                   hoverinfo = 'skip',
                   showlegend = False,
                   marker_color = 'rgba(0, 0, 0, 0)',
                   marker = {'size': 25,
                             'line': {'color': df['COLOR'],
                                      'width': 8}})]

layout = go.Layout(plot_bgcolor = black,
                   hovermode = 'x unified',
                   uirevision = 'value')

figure = go.Figure(data = data, layout = layout)


# DASHBOARD LAYOUT
app = dash.Dash(external_stylesheets = [dbc.themes.BOOTSTRAP])

app.layout = html.Div(id = 'general_div',
                      children = [html.Div(id = 'first_row',
                                           children = [dcc.Graph(id = 'main_graph',
                                                                 figure = figure,
                                                                 style = {'height': 800,
                                                                          'width': 1400})],

                                           className = 'row'),

                                  html.Div(id = 'second_row',
                                           children = [dash_table.DataTable(id = 'main_table',
                                                                            columns = headers,
                                                                            data = table,
                                                                            style_data_conditional = table_colors,
                                                                            style_table = {'margin-left': '3vw',
                                                                                           'margin-top': '3vw'},
                                                                            style_cell = {'font-family': fontfamily,
                                                                                          'fontSize': fontsize},
                                                                            style_header = {'backgroundColor': 'rgb(230, 230, 230)',
                                                                                            'fontWeight': 'bold'})],

                                           className = 'row')])


# CALLBACK DEFINITION
@app.callback(Output('main_table', 'style_data_conditional'),
              [Input('main_graph', 'selectedData'),
               Input('main_table', 'style_data_conditional')])
def display_selected_data(selectedData, style_data_conditional):
    # what to do here and how to run this callback?
    return style_data_conditional


if __name__ == "__main__":
    app.run_server()

In the dashboard are present a scatterplot (dcc.Graph) and a table (dash_table.DataTable). Each point of the scatterplot corresponds to a specific row of the table and I read these data from an excel file.
The data in the excel file are in this format:

PRODUCT CODE    NUMBER  DIAMETER
AAAAA   1412    8000    0.049
BBBBB   1418    3900    0.08
CCCCC   1420    7600    0.06
DDDDD   1426    8500    0.049
EEEEE   1430    3900    0.08
FFFFF   1442    3900    0.08
GGGGG   1490    8500    0.049
HHHHH   1504    9000    0.18
IIIII   1514    5500    0.224
JJJJJ   1584    7600    0.06
KKKKK   1606    8500    0.049
LLLLL   1618    7600    0.06
MMMMM   1638    7600    0.06
NNNNN   1640    7600    0.06
OOOOO   1666    3900    0.08
PPPPP   1670    8000    0.049
QQQQQ   1672    8000    0.049
RRRRR   1674    7600    0.06
SSSSS   1700    7100    0.071
TTTTT   1704    8500    0.049
UUUUU   1712    7600    0.06
VVVVV   1718    7600    0.06
WWWWW   1722    8000    0.065

I would like to impletent this function: when a user selects some point in the scatterplot, the code highlights the corresponding rows in the table (as exemple changing the background color of the cells in those rows to 'pink', except for the 'COLOR' column, which keeps its color).

Checked these sources:

  1. dash-datatable-individual-highlight-using-style-data-conditionals-works-unusual
  2. dash-datatable-style-data-conditional-row-vice
  3. interactive-graphing

I tried to sketch a callback like this, but without success:

@app.callback(Output('selected_data', 'children'),
              [Input('main_graph', 'selectedData'),
               Input('main_table', 'style_data_conditional')])
def display_selected_data(selectedData, style_data_conditional):
    selected_points = []
    for point in selectedData['points']:
        selected_points.append(point['marker.line.color'])
    selected = [{'if': {'filter': '{COLOR} eq ' + f'"{color}"',
                        'column_id': 'PRODUCT'},
                 'backgroundColor': 'pink'} for color in selected_points]
    style_data_conditional.extend(selected)

    return style_data_conditional

Thanks in advance.

Version info

Python                       3.7.0
dash                         1.12.0
dash-bootstrap-components    0.10.1
dash-core-components         1.10.0
dash-html-components         1.0.3
matplotlib                   3.0.2
numpy                        1.15.4
plotly                       4.7.0

回答1:


I managed to solve the problem by taking selectedData as input from main_graph and processing main_table's style_data_conditional as output through the function update_table_style.
Here I color with a dark gray the odd rows, to improve the visibility of the table, then I set the background color of the selected rows through a style conditional. Finally I change the background of the first column based on the color of each row (color reported on the first column for each row).

Code:

# IMPORT SECTION
import dash
import dash_table
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output
import plotly.graph_objs as go
import numpy as np
import pandas as pd
from math import ceil
from matplotlib.cm import Set3


# INPUT DATA
n = 7
d_min = 0.2
d_max = 0.8
d_step = 0.1
N_min = 2000
N_max = 8000
N_step = 1000
D = 40
h = 20
dataframe_file = 'data.xlsx'


# COLOR AND FONT DEFINITION
grey = '#e0e1f5'
black = '#212121'
scatter_colors = ['#' + ''.join(['{:02x}'.format(int(255*Set3(i)[j])) for j in range(3)]) for i in range(n)]
fontsize = 18
fontfamily = 'Arial, sans-serif'


# READ CSV DATA
df = pd.read_excel(dataframe_file)


# CREATE DATA FOR DASH DATATABLE
df_scatter_colors = ceil(len(df) / len(scatter_colors)) * scatter_colors
df_scatter_colors = df_scatter_colors[:len(df)]
df.insert(loc = 0, column = 'COLOR', value = df_scatter_colors)

headers = [{"name": i, "id": i} for i in df.columns]

table = df.to_dict('records')


# CREATE DATA AND LAYOUT FOR THE SCATTERPLOT
x_jitter = 0.05 * N_step * np.random.randn(len(df))
y_jitter = 0.05 * d_step * 1000 * np.random.randn(len(df))
data = [go.Scatter(x = df['NUMBER'] + x_jitter,
                   y = df['DIAMETER'] + y_jitter,
                   text = df['PRODUCT'],
                   mode = 'markers',
                   hoverinfo = 'skip',
                   showlegend = False,
                   marker_color = 'rgba(0, 0, 0, 0)',
                   marker = {'size': 25,
                             'line': {'color': df['COLOR'],
                                      'width': 8}})]

layout = go.Layout(plot_bgcolor = black,
                   hovermode = 'x unified',
                   uirevision = 'value')

figure = go.Figure(data = data, layout = layout)

def update_table_style(selectedData):
    table_style_conditions = [{'if': {'row_index': 'odd'},
                               'backgroundColor': 'rgb(240, 240, 240)'}]

    if selectedData != None:
        points_selected = []
        for point in selectedData['points']:
            points_selected.append(point['pointIndex'])
        selected_styles = [{'if': {'row_index': i},
                            'backgroundColor': 'pink'} for i in points_selected]
        table_style_conditions.extend(selected_styles)

    table_style_conditions.extend([{'if': {'row_index': i, 'column_id': 'COLOR'},
                                    'background-color': df.iloc[i]['COLOR'],
                                    'color': df.iloc[i]['COLOR']} for i in range(df.shape[0])])

    return table_style_conditions


# DASHBOARD LAYOUT
app = dash.Dash(external_stylesheets = [dbc.themes.BOOTSTRAP])

app.layout = html.Div(id = 'general_div',
                      children = [html.Div(id = 'first_row',
                                           children = [dcc.Graph(id = 'main_graph',
                                                                 figure = figure,
                                                                 style = {'height': 800,
                                                                          'width': 1400})],

                                           className = 'row'),

                                  html.Div(id = 'second_row',
                                           children = [dash_table.DataTable(id = 'main_table',
                                                                            columns = headers,
                                                                            data = table,
                                                                            # style_data_conditional = table_colors,
                                                                            style_table = {'margin-left': '3vw',
                                                                                           'margin-top': '3vw'},
                                                                            style_cell = {'font-family': fontfamily,
                                                                                          'fontSize': fontsize},
                                                                            style_header = {'backgroundColor': 'rgb(230, 230, 230)',
                                                                                            'fontWeight': 'bold'})],

                                           className = 'row')])


# CALLBACK DEFINITION
@app.callback(Output('main_table', 'style_data_conditional'),
              [Input('main_graph', 'selectedData')])
def display_selected_data(selectedData):
    table_style_conditions = update_table_style(selectedData)
    return table_style_conditions


if __name__ == "__main__":
    app.run_server()

The coloring part is this:

table_style_conditions = [{'if': {'row_index': 'odd'},
                           'backgroundColor': 'rgb(240, 240, 240)'}]

if selectedData != None:
    points_selected = []
    for point in selectedData['points']:
        points_selected.append(point['pointIndex'])
    selected_styles = [{'if': {'row_index': i},
                        'backgroundColor': 'pink'} for i in points_selected]
    table_style_conditions.extend(selected_styles)

table_style_conditions.extend([{'if': {'row_index': i, 'column_id': 'COLOR'},
                                'background-color': df.iloc[i]['COLOR'],
                                'color': df.iloc[i]['COLOR']} for i in range(df.shape[0])])

Here the result I get:



来源:https://stackoverflow.com/questions/62516573/update-dash-table-by-selecting-points-on-scatter-plot

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!