ANOVA for groups within a dataframe using scipy

≯℡__Kan透↙ 提交于 2021-02-05 20:31:06

问题


I have a dataframe as follows. I need to do ANOVA on this between three conditions. The dataframe looks like:

data0 = pd.DataFrame({'Names': ['CTA15', 'CTA15', 'AC007', 'AC007', 'AC007','AC007'], 
    'value': [22, 22, 2, 2, 2,5], 
    'condition':['NON', 'NON', 'YES', 'YES', 'RE','RE']})

I need to do ANOVA test between YES and NON, NON and RE and YES and RE, conditions from conditions for Names. I know I could do it like this,

NON=df.query('condition =="NON"and Names=="CTA15"')
no=df.value
YES=df.query('condition =="YES"and Names=="CTA15"')    
Y=YES.value

Then perform one way ANOVA as following,

    from scipy import stats                
    f_val, p_val = stats.f_oneway(no, Y)            
    print ("One-way ANOVA P =", p_val )

But would be great if there is any elegant solution as my initial data frame is big and has many names and conditions to compare between


回答1:


Consider the following sample DataFrame:

df = pd.DataFrame({'Names': np.random.randint(1, 10, 1000), 
                   'value': np.random.randn(1000), 
                   'condition': np.random.choice(['NON', 'YES', 'RE'], 1000)})

df.head()
Out: 
   Names condition     value
0      4        RE  0.844120
1      4       NON -0.440285
2      5       YES  0.559497
3      4        RE  0.472425
4      9       YES  0.205906

The following groups the DataFrame by Names, and then passes each condition group to ANOVA:

import scipy.stats as ss
for name_group in df.groupby('Names'):
    samples = [condition[1] for condition in name_group[1].groupby('condition')['value']]
    f_val, p_val = ss.f_oneway(*samples)
    print('Name: {}, F value: {:.3f}, p value: {:.3f}'.format(name_group[0], f_val, p_val))

Name: 1, F value: 0.138, p value: 0.871
Name: 2, F value: 1.458, p value: 0.237
Name: 3, F value: 0.742, p value: 0.479
Name: 4, F value: 2.718, p value: 0.071
Name: 5, F value: 0.255, p value: 0.776
Name: 6, F value: 1.731, p value: 0.182
Name: 7, F value: 0.269, p value: 0.764
Name: 8, F value: 0.474, p value: 0.624
Name: 9, F value: 1.226, p value: 0.297

For post-hoc tests, you can use statsmodels (as explained here):

from statsmodels.stats.multicomp import pairwise_tukeyhsd
for name, grouped_df in df.groupby('Names'):
    print('Name {}'.format(name), pairwise_tukeyhsd(grouped_df['value'], grouped_df['condition']))
Name 1 Multiple Comparison of Means - Tukey HSD,FWER=0.05
============================================
group1 group2 meandiff  lower  upper  reject
--------------------------------------------
 NON     RE    0.0086  -0.5129 0.5301 False 
 NON    YES    0.0084  -0.4817 0.4986 False 
  RE    YES   -0.0002  -0.5217 0.5214 False 
--------------------------------------------
Name 2 Multiple Comparison of Means - Tukey HSD,FWER=0.05
============================================
group1 group2 meandiff  lower  upper  reject
--------------------------------------------
 NON     RE   -0.0089  -0.5299 0.5121 False 
 NON    YES    0.083   -0.4182 0.5842 False 
  RE    YES    0.0919  -0.4008 0.5846 False 
--------------------------------------------
Name 3 Multiple Comparison of Means - Tukey HSD,FWER=0.05
============================================
group1 group2 meandiff  lower  upper  reject
--------------------------------------------
 NON     RE    0.2401  -0.3136 0.7938 False 
 NON    YES    0.2765  -0.2903 0.8432 False 
  RE    YES    0.0364  -0.5052 0.578  False 
--------------------------------------------
Name 4 Multiple Comparison of Means - Tukey HSD,FWER=0.05
============================================
group1 group2 meandiff  lower  upper  reject
--------------------------------------------
 NON     RE    0.0894  -0.5825 0.7613 False 
 NON    YES   -0.0437  -0.7418 0.6544 False 
  RE    YES   -0.1331  -0.6949 0.4287 False 
--------------------------------------------
Name 5 Multiple Comparison of Means - Tukey HSD,FWER=0.05
============================================
group1 group2 meandiff  lower  upper  reject
--------------------------------------------
 NON     RE   -0.4264  -0.9495 0.0967 False 
 NON    YES    0.0439  -0.4264 0.5142 False 
  RE    YES    0.4703  -0.0155 0.9561 False 
--------------------------------------------
Name 6 Multiple Comparison of Means - Tukey HSD,FWER=0.05
============================================
group1 group2 meandiff  lower  upper  reject
--------------------------------------------
 NON     RE    0.0649  -0.4971 0.627  False 
 NON    YES    -0.406  -0.9405 0.1285 False 
  RE    YES   -0.4709  -1.0136 0.0717 False 
--------------------------------------------
Name 7 Multiple Comparison of Means - Tukey HSD,FWER=0.05
============================================
group1 group2 meandiff  lower  upper  reject
--------------------------------------------
 NON     RE    0.3111  -0.2766 0.8988 False 
 NON    YES   -0.1664  -0.7314 0.3987 False 
  RE    YES   -0.4774  -1.0688 0.114  False 
--------------------------------------------
Name 8 Multiple Comparison of Means - Tukey HSD,FWER=0.05
============================================
group1 group2 meandiff  lower  upper  reject
--------------------------------------------
 NON     RE   -0.0224   -0.668 0.6233 False 
 NON    YES    0.0119   -0.668 0.6918 False 
  RE    YES    0.0343  -0.6057 0.6742 False 
--------------------------------------------
Name 9 Multiple Comparison of Means - Tukey HSD,FWER=0.05
============================================
group1 group2 meandiff  lower  upper  reject
--------------------------------------------
 NON     RE   -0.2414  -0.7792 0.2963 False 
 NON    YES    0.0696  -0.5746 0.7138 False 
  RE    YES    0.311   -0.3129 0.935  False 


来源:https://stackoverflow.com/questions/44065573/anova-for-groups-within-a-dataframe-using-scipy

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!