问题
I have been practicing the linked list and wanted to implement the recurse on it, although in some cases I was able to implement it efficiently, in other cases I failed miserably at doing so. I would like to know a method to do the recursive so as not to have to use the "while" to go through the Linked List, I have used the recurse to go through the arrays but when I wanted to do it similar in this case it fails.
I don't have much experience in implementing recursion and wanted to apply it in this method to get more experience with it, but at least it helped me understand the Linked List more by having to do it over and over again. Thank you.
class Node {
// Accept arguments (the second one could be optional)
constructor(data, next) {
this.data = data;
this.next = next;
}
lastNode() { // new method that uses recursion
return this.next?.lastNode() || this;
}
}
class ListRecurse {
constructor() {
this.head = null;
this.size = 0;
}
add(data) {
let newNode = new Node(data); // No second argument. It has a default value
if (this.head === null) {
this.head = newNode;
} else {
// The lastNode implementation uses recursion:
this.head.lastNode().next = newNode;
}
this.size ++;
return this; // to allow chaining
}
insertAdd(data, index) {
if (index < 0 || index > this.size) {
return null;
}
let newNode = new Node(data);
let current = this.head;
let prev;
if (index === 0) {
newNode.next = current;
this.head = newNode;
}
else {
for (let i = 0; i < index; i++) {
prev = current;
current = current.next;
}
this.head.lastNode().next = current;
prev.next = newNode;
}
this.size++;
return this;
}
Print() {
if (!this.size) {
return null;
}
let current = this.head;
let result = "";
while(current) {
result += current.data += "=>";
current = current.next;
}
result += "X";
return result;
}
DeletexData(data) {
let current = this.head;
let prev = null;
if (this.head === null) {
return null;
}
else if (current.data === data) {
if(!prev) {
this.head = this.head.next;
}
else
prev.next = current.next
}
return this.SearchDelete(data)
}
SearchDelete (data) {
let current = this.head;
let prev = null;
while(current != null) {
if (current.data === data) {
if (!current.next) prev.next = null
else prev.next = current.next
this.size--;
return data;
}
prev = current;
current = current.next;
}
return null;
}
DeleteLastNode() {
let current = this.head;
if (current === null) {
return 1
}
else if (current.next === null) {
this.head = null;
}
else return this.LastNode()
};
LastNode() {
let current = this.head;
while (current.next.next != null) {
current = current.next;
}
current.next = null;
this.size--;
}
Search(data) {
let current = this.head;
if (current === null) {
return null;
}
else
return this.RainbowSix(data)
}
RainbowSix(data) {
let current = this.head;
while (current) {
if (current.data === data) {
return current;
}
current = current.next;
}
return null;
}
Size(){
return this.size
}
}
let list = new ListRecurse();
list.add(1).add(2).add(3).add(44).add(66);
list.insertAdd(33,0)
list.DeleteLastNode()
console.log(list.Search(3))
console.log(list.Size())
console.log(list.Print())
console.log(list);
回答1:
I was working on this answer as Scott made his post, making most of this information redundant. There is a portion which shows how to couple OOP-style with functional (persistent) data structures which you should find helpful.
Similar to Scott's answer, we start by writing plain functions, no classes or methods. I'm going to place mine in a module named list.js
-
// list.js
import { raise } from "./func"
const nil =
Symbol("nil")
const isNil = t =>
t === nil
const node = (value, next) =>
({ node, value, next })
const singleton = v =>
node(v, nil)
const fromArray = a =>
a.reduceRight((r, _) => node(_, r), nil)
const insert = (t, v, i = 0) =>
isNil(t)
? singleton(v)
: i > 0
? node(t.value, insert(t.next, v, i - 1))
: node(v, t)
const last = t =>
isNil(t)
? raise("cannot get last element of empty list")
: isNil(t.next)
? t.value
: last(t.next)
const search = (t, q) =>
isNil(t)
? undefined
: t.value === q
? t
: search(t.next, q)
const size = t =>
isNil(t)
? 0
: 1 + size(t.next)
const toString = t =>
isNil(t)
? "Nil"
: `${t.value}->${toString(t.next)}`
const toArray = t =>
isNil(t)
? []
: [ t.value, ...toArray(t.next) ]
Now we can implement our OOP-style, List
interface. This gives you the chaining behaviour you want. Notice how the methods are simple wrappers around the plain functions we wrote earlier -
// list.js (continued)
class List
{ constructor(t = nil)
{ this.t = t }
isNil()
{ return isNil(this.t) }
size()
{ return size(this.t) }
add(v)
{ return new List(node(v, this.t)) }
insert(v, i)
{ return new List(insert(this.t, v, i)) }
toString()
{ return toString(this.t) }
}
Finally, make sure to export the parts of your module
// list.js (continued)
export { nil, isNil, node, singleton, fromArray, insert, last, search, size, toArray, toString }
export default List
The List
interface allows you to do things in the familiar OOP ways -
import List from "../list"
const t = (new List).add(3).add(2).add(1)
console.log(t.toString())
// 1->2->3->Nil
console.log(t.insert(9, 0).toString())
// 9->1->2->3->Nil
console.log(t.isNil())
// false
console.log(t.size())
// 3
Or you can import your module and work in a more functional way -
import * as list from "../list"
const t = list.fromArray([1, 2, 3])
console.log(list.toString(t))
// 1->2->3->Nil
console.log(list.isNil(t))
// true
console.log(list.size(t))
// 3
I think the important lesson here is that the module functions can be defined once, and then the OOP interface can be added afterwards.
A series of tests ensures the information in this answer is correct. We start writing the plain function tests -
// list_test.js
import List, * as list from "../list.js"
import * as assert from '../assert.js'
import { test, symbols } from '../test.js'
await test("list.isNil", _ => {
assert.pass(list.isNil(list.nil))
assert.fail(list.isNil(list.singleton(1)))
})
await test("list.singleton", _ => {
const [a] = symbols()
const e = list.node(a, list.nil)
assert.equal(e, list.singleton(a))
})
await test("list.fromArray", _ => {
const [a, b, c] = symbols()
const e = list.node(a, list.node(b, list.node(c, list.nil)))
const t = [a, b, c]
assert.equal(e, list.fromArray(t))
})
await test("list.insert", _ => {
const [a, b, c, z] = symbols()
const t = list.fromArray([a, b, c])
assert.equal(list.fromArray([z,a,b,c]), list.insert(t, z, 0))
assert.equal(list.fromArray([a,z,b,c]), list.insert(t, z, 1))
assert.equal(list.fromArray([a,b,z,c]), list.insert(t, z, 2))
assert.equal(list.fromArray([a,b,c,z]), list.insert(t, z, 3))
assert.equal(list.fromArray([a,b,c,z]), list.insert(t, z, 99))
assert.equal(list.fromArray([z,a,b,c]), list.insert(t, z, -99))
})
await test("list.toString", _ => {
const e = "1->2->3->Nil"
const t = list.fromArray([1,2,3])
assert.equal(e, list.toString(t))
assert.equal("Nil", list.toString(list.nil))
})
await test("list.size", _ => {
const [a, b, c] = symbols()
assert.equal(0, list.size(list.nil))
assert.equal(1, list.size(list.singleton(a)))
assert.equal(2, list.size(list.fromArray([a,b])))
assert.equal(3, list.size(list.fromArray([a,b,c])))
})
await test("list.last", _ => {
const [a, b, c] = symbols()
const t = list.fromArray([a,b,c])
assert.equal(c, list.last(t))
assert.throws(Error, _ => list.last(list.nil))
})
await test("list.search", _ => {
const [a, b, c, z] = symbols()
const t = list.fromArray([a, b, c])
assert.equal(t, list.search(t, a))
assert.equal(list.fromArray([b, c]), list.search(t, b))
assert.equal(list.singleton(c), list.search(t, c))
assert.equal(undefined, list.search(t, z))
})
await test("list.toArray", _ => {
const [a,b,c] = symbols()
const e = [a,b,c]
const t = list.fromArray(e)
assert.equal(e, list.toArray(t))
})
Next we ensure the List
interface behaves accordingly -
// list_test.js (continued)
await test("List.isNil", _ => {
assert.pass((new List).isNil())
assert.fail((new List).add(1).isNil())
})
await test("List.size", _ => {
const [a,b,c] = symbols()
const t1 = new List
const t2 = t1.add(a)
const t3 = t2.add(b)
const t4 = t3.add(c)
assert.equal(0, t1.size())
assert.equal(1, t2.size())
assert.equal(2, t3.size())
assert.equal(3, t4.size())
})
await test("List.toString", _ => {
const t1 = new List
const t2 = (new List).add(3).add(2).add(1)
assert.equal("Nil", t1.toString())
assert.equal("1->2->3->Nil", t2.toString())
})
await test("List.insert", _ => {
const t = (new List).add(3).add(2).add(1)
assert.equal("9->1->2->3->Nil", t.insert(9, 0).toString())
assert.equal("1->9->2->3->Nil", t.insert(9, 1).toString())
assert.equal("1->2->9->3->Nil", t.insert(9, 2).toString())
assert.equal("1->2->3->9->Nil", t.insert(9, 3).toString())
assert.equal("1->2->3->9->Nil", t.insert(9, 99).toString())
assert.equal("9->1->2->3->Nil", t.insert(9, -99).toString())
})
Dependencies used in this post -
func.raise
- allows you to raise an error using an expression instead of a throw
statement
// func.js
const raise = (msg = "", E = Error) => // functional throw
{ throw E(msg) }
// ...
export { ..., raise }
回答2:
This may or may not help. It suggests a substantially different way to build your lists.
The idea is that recursion, although occasionally used with Object-Oriented (OO) systems, is much more closely tied to Functional Programming (FP). So if you're going to use recursion on your lists, you might as well use it with FP lists.
Creating and manipulating lists is one of the strengths of FP, and we can write your code much more simply. We create a bare list of one item, 42
by calling const list1 = ins (42) (null)
. We prepend that with 17
by calling const list2 = ins (17) (list1)
. Or we can write a whole chain of these like this:
const list3 = ins (1) (ins (2) (ins (3) (ins (4) (ins (5) (null)))))
There are many differences from your code, but one of the most fundamental, is that this treats lists as immutable objects. None of our code will change a list, it will just create a new one with the altered properties.
This is what ins
might look like:
const ins = (data) => (list) =>
({data, next: list})
We could choose to write this as (data, list) => ...
instead of (data) => (list) => ...
. That's just a matter of personal preference about style.
But the basic construction is that a list is
- a value
- followed by either
- another list
- or
null
Here is an implementation of these ideas:
const ins = (data) => (list) =>
({data, next: list})
const del = (target) => ({data, next}) =>
target == data ? next : next == null ? {data, next} : {data, next: del (target) (next)}
const delLast = ({data, next}) =>
next == null ? null : {data, next: delLast (next)}
const size = (list) =>
list == null ? 0 : 1 + size (list.next)
const search = (pred) => ({data, next}) =>
pred (data) ? {data, next} : next != null ? search (pred) (next) : null
const fnd = (target) =>
search ((data) => data == target)
const print = ({data, next}) =>
data + (next == null ? '' : ('=>' + print (next)))
const list1 = ins (1) (ins (2) (ins (3) (ins (44) (ins (66) (null)))))
const list2 = ins (33) (list1)
const list3 = delLast (list2)
console .log (fnd (3) (list3))
console .log (size (list3))
console .log (print (list3))
console .log (list3)
.as-console-wrapper {max-height: 100% !important; top: 0}
Note that all of these functions, except for ins
and find
are directly recursive. They all call themselves. And find
simply delegates the recursive work to search
.
It's too much to try to describe all of these functions, but lets look at two. print
is a simple function.
const print = ({data, next}) =>
data + (next == null ? '' : ('=>' + print (next)))
We build our output string by including our data followed by one of two things:
- an empty string, if
next
isnull
'=>'
plus the recursiveprint
call onnext
, otherwise.
del
is a somewhat more complex function:
const del = (target) => ({data, next}) =>
target == data
? next
: next == null
? {data, next: null}
: {data, next: del (target) (next)}
We test if our current data is the target we want to delete. If it is, we simply return the list stored as next
.
If not, we check whether next
is null. If it is, we return (a copy of) the current list. If it is not, then we return a new list formed by our current data and a recursive call to delete the target from the list stored as next
.
If you want to learn more about these ideas, you probably want to search for "Cons lists" ("con" here is not the opposite of "pro", but has to do with "construct"ing something.)
I used different terms than are most commonly used there, but the ideas are much the same. If you run across the terms car
and cdr
, they are equivalent to our data
and next
, respectively.
来源:https://stackoverflow.com/questions/65290209/recurse-in-linked-list