问题
I want to define a pointer to a subarray. For a simple range this is easily done by pointer => array(i:j)
, but I can't figure out how to do this for a map like k=[k1,k2,k3]
. If I would define another array I could use a loop like array2=[(array1(k(j)),j=1,size(k,1))]
. But it isn't possible to assign a pointer in a similar way (pointer => [(array1(k(j)),j=1,size(k,1))]
) since the r.h.s. of the expression seems to define another variabel which then not even has the target attribute. For simple tasks, a trick around this, is to first assign a pointer to the total array an to use the map on the readout. But in my case this doesn't seem to be possible.
I will attach to examples: The first one shows what I described above. The second one is a more complicated example, where the trick doesn't work anymore. And in addition a two dimensional map is required.
Minimal example:
program test
integer, parameter :: n=10,n_k=3
real,target :: a(1:n)
real :: b(1:n_k)
integer :: k(1:n_k)
integer :: j
real,pointer :: p(:)
! fill array a and define map k:
a=[(real(j),j=1,n)]
k=[((j+1)*2,j=1,n_k)]
! can be used to print the arrays:
!write(*,*) a
!write(*,*) k
! can be used to write only the part of a defined by k:
!write(*,*) (a(k(j)),j=1,n_k)
! this an similar things didn't work:
!p(1:n_k) => [(a(k(j)),j=1,n_k)]
! works, but not generally:
p => a
write(*,*) (p(k(j)),j=1,n_k)
! works, only for arrays:
b=(/(a(k(j)),j=1,n_k)/)
write(*,*) b
end program
More complicated (but also kind of minimal) example which shows (hopefully) the problem I really have. For an easy understanding some explanation leads through it. There are plenty of write commands to print the arrays. I appreciate for the amount of code, but I really don't see how to make a shorter and understandable working example:
module mod1
type base
real :: a
end type
type,extends(base) :: type1
end type
type,extends(base) :: type2
type(type1),allocatable :: b(:)
end type
type(type2),allocatable,target :: c(:)
contains
subroutine printer(z)
class(*),pointer,dimension(:) :: z
integer :: j,a_z,n_z
character(len=40) :: f,ff='(F10.2,1x))',form_z
! define format for printing:
a_z=lbound(z,1)
n_z=ubound(z,1)
write(f,'(I0)') (n_z-a_z+1)
form_z="("//trim(adjustl(f))//ff
! writing:
select type(z)
class is (base)
write(*,form_z) (z(j)%a,j=a_z,n_z)
end select
end subroutine
end module
program test
use mod1
integer,parameter :: n_b=8,n_c=6,n_js=3,n_ls=2
integer :: js(1:n_js),ls(1:n_ls)
integer :: j,l
class(*),pointer :: p(:)
character(len=40) :: f,ff='(F10.2,1x))',form_c,form_b
! define format for printing:
write(f,'(I0)') n_b
form_b="("//trim(adjustl(f))//ff
write(f,'(I0)') n_c
form_c="("//trim(adjustl(f))//ff
! creating and filling the arrays:
allocate(c(n_c))
c%a=[(2d0*real(j),j=1,n_c)]
do j=1,n_c
allocate(c(j)%b(n_b))
c(j)%b%a=[(real(l)*1d1**(j-1),l=1,n_b)]
end do
! write arrays to compare later:
write(*,form_c) c%a
write(*,*)
write(*,form_b) (c(j)%b%a,j=1,n_c)
write(*,*)
! denfining two maps (size and entries will be input in the final program):
js=[1,4,6]
ls=[2,7]
! using the maps to print only the desired entries:
write(*,*) (c(js(j))%a,j=1,n_js)
write(*,*)
write(*,*) ((c(js(j))%b(ls(l))%a,j=1,n_js),l=1,n_ls)
write(*,*)
! !!! here I want to use the maps as well, but so far I only know how to use ranges:
p => c(1:4)
call printer(p)
write(*,*)
p => c(2)%b(3:6)
call printer(p)
write(*,*)
end program
Edit: Just for the record, I solved the problem now by using arrays of derived types including pointers and slightly changing the calling subroutines.
回答1:
You cannot do this with pointer association (e.g. pointer1 => array1(vector_subscript)
. Section 7.2.2.2 of the Fortran 2008 standard that disallows this is:
R733 pointer-assignment-stmt is data-pointer-object [ (bounds-spec-list) ] => data-target
There are two other forms, but they do not match your use, nor would they change the outcome. Reading further:
R737 data-target is variable
C724 (R737) A variable shall have either the TARGET or POINTER attribute, and shall not be an array section with a vector subscript.
This is why you cannot perform the pointer association your are attempting. You can however work around this and with pointer allocation. See this code:
n_k = 3
k = [((j+1)*2,j=1,n_k)] ! a vector subscript
p => a(k) ! NOT OK. Violates C724
allocate(p(n_k)) ! Associate your pointer this way
p = a(k) ! This is OK.
write(*,*) p
Which yields (wrapped in your example program):
% ./ptrtest
4.00000000 6.00000000 8.00000000
This allocates p
to be the proper size and then assigns from a
with a vector subscript. This gets around the issue of directly associating p
with a map of a
. This snippet assumes the variables are declared and initialized per your example code. This shows that you can assign a vector subscript of an array to a pointer, but only one that is already associated, not during the association.
As noted in a comment to your Q, if you have a regular stride, you can make the pointer association directly. For your first test case, this would be equivalent and work:
p => a(4:2:8) ! Allocation to a strided array is allowed
If however, you have an irregular vector subscript then the method in this answer will be what you need to use to accomplish the pointer association.
Another workaround you can use is passing a pointer and the map to a procedure. Consider the following code:
program test
implicit none
integer, parameter :: nx = 10, nx_m = 3
integer,dimension(nx_m) :: x_map
integer :: i
real, dimension(nx),target :: a
real, dimension(:), pointer :: p
! initialize array
a = [(real(i*2),i=1,10)]
write (*,'(10(f5.1 x))') a
!define a map
x_map = [1, 9, 4]
! associate pointer
p => a
call print_map(p, x_map)
contains
subroutine print_map(apointer, map)
implicit none
real, dimension(:), pointer :: apointer
integer, dimension(:) :: map
write (*,*) apointer(map)
end subroutine print_map
end program test
In this case, p
"knows" about a
and the map of elements in a
can be calculated in the caller. Rather than associating (=>
) p
as a map of a
(which cannot be done), p
is associated to a
and the map passed along with it.
This code produces the output:
% ./ptrtest3
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0
2.00000000 18.0000000 8.00000000
来源:https://stackoverflow.com/questions/24310495/pointer-to-subarray-defined-by-a-map