问题
I am trying to solve the reconstruct itinerary problem (https://leetcode.com/problems/reconstruct-itinerary/) in Scala using functional approach. Java solution works but Scala doesn't. One reason I found out was the hashmap is being updated and every iteration has the latest hashmap (even when popping from recursion) which is weird.
Here is the solution in Java:
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.PriorityQueue;
public class Solution1 {
private void dfg(Map<String, PriorityQueue<String>> adj, LinkedList<String> result, String vertex){
PriorityQueue<String> pq = adj.get(vertex);
while (pq!=null && !pq.isEmpty()){
System.out.println("Before :"+adj.get(vertex));
String v = pq.poll();
System.out.println("After :"+ adj.get(vertex));
dfg(adj,result,v);
}
result.addFirst(vertex);
}
public List<String> findItinerary(List<List<String>> tickets){
Map<String,PriorityQueue<String>> adj = new HashMap<>();
for(List<String> ticket: tickets){
adj.putIfAbsent(ticket.get(0),new PriorityQueue<>());
adj.get(ticket.get(0)).add(ticket.get(1));
}
LinkedList<String> result = new LinkedList<>();
dfg(adj,result,"JFK");
//not reverse yet
return result;
}
public static void main(String[] args){
List<List<String>> tickets = new ArrayList<>();
List t1= new ArrayList();
t1.add("JFK");
t1.add("SFO");
tickets.add(t1);
List t2= new ArrayList();
t2.add("JFK");
t2.add("ATL");
tickets.add(t2);
List t3= new ArrayList();
t3.add("SFO");
t3.add("ATL");
tickets.add(t3);
List t4= new ArrayList();
t4.add("ATL");
t4.add("JFK");
tickets.add(t4);
List t5= new ArrayList();
t5.add("ATL");
t5.add("SFO");
tickets.add(t5);
System.out.println();
Solution1 s1 = new Solution1();
List<String> finalRes = s1.findItinerary(tickets);
for(String model : finalRes) {
System.out.print(model + " ");
}
}
}
Here is my solution in Scala which is not working:
package graph
class Itinerary {
}
case class Step(g: Map[String,List[String]],sort: List[String]=List())
object Solution {
def main(arr: Array[String]) = {
val tickets = List(List("JFK","SFO"),List("JFK","ATL"),List("SFO","ATL"),List("ATL","JFK"),List("ATL","SFO"))
println(findItinerary(tickets))
}
def findItinerary(tickets: List[List[String]]): List[String] = {
val g = tickets.foldLeft(Map[String,List[String]]())((m,t)=>{
val key=t(0)
val value= t(1)
m + (key->(m.getOrElse(key,Nil) :+ value).sorted)
})
println(g)
// g.keys.foldLeft(Step())((s,n)=> dfs(n,g,s)).sort.toList
dfs("JFK",Step(g)).sort.toList
}
def dfs(vertex: String,step: Step): Step = {
println("Input vertex " + vertex)
println("Input map "+ step.g)
val updatedStep= step.g.getOrElse(vertex,Nil).foldLeft(step) ((s,n)=>{
//println("Processing "+n+" of vertex "+vertex)
//delete link
val newG = step.g + (vertex->step.g.getOrElse(vertex,Nil).filter(v=>v!=n))
// println(newG)
dfs(n,step.copy(g=newG))
})
println("adding vertex to result "+vertex)
updatedStep.copy(sort = updatedStep.sort:+vertex)
}
}
回答1:
Scala is sometimes approached as a "better" Java, but that's really very limiting. If you can get into the FP mindset, and study the Standard Library, you'll find that it's a whole new world.
def findItinerary(tickets: List[List[String]]): List[String] = {
def loop(from : String
,jump : Map[String,List[String]]
,acc : List[String]) : List[String] = jump.get(from) match {
case None => if (jump.isEmpty) from::acc else Nil
case Some(next::Nil) => loop(next, jump - from, from::acc)
case Some(nLst) =>
nLst.view.map{ next =>
loop(next, jump+(from->(nLst diff next::Nil)), from::acc)
}.find(_.lengthIs > 0).getOrElse(Nil)
}
loop("JFK"
,tickets.groupMap(_(0))(_(1)).map(kv => kv._1 -> kv._2.sorted)
,Nil).reverse
}
回答2:
I am going to be honest that I didn't look through your code to see where the problem was. But, I got caught by the problem and decided to give it a go; here is the code:
(hope my code helps you)
type Airport = String // Refined 3 upper case letters.
final case class AirlineTiket(from: Airport, to: Airport)
object ReconstructItinerary {
// I am using cats NonEmptyList to improve type safety, but you can easily remove it from the code.
private final case class State(
currentAirport: Airport,
availableDestinations: Map[Airport, NonEmptyList[Airport]],
solution: List[Airport]
)
def apply(tickets: List[AirlineTiket])(start: Airport): Option[List[Airport]] = {
@annotation.tailrec
def loop(currentState: State, checkpoints: List[State]): Option[List[Airport]] = {
if (currentState.availableDestinations.isEmpty) {
// We used all the tickets, so we can return this solution.
Some((currentState.currentAirport :: currentState.solution).reverse)
} else {
val State(currentAirport, availableDestinations, solution) = currentState
availableDestinations.get(currentAirport) match {
case None =>
// We got into nowhere, lets see if we can return to a previous state...
checkpoints match {
case checkpoint :: remaining =>
// If we can return from there
loop(currentState = checkpoint, checkpoints = remaining)
case Nil =>
// If we can't, then we can say that there is no solution.
None
}
case Some(NonEmptyList(destination, Nil)) =>
// If from the current airport we can only travel to one destination, we will just follow that.
loop(
currentState = State(
currentAirport = destination,
availableDestinations - currentAirport,
currentAirport :: solution
),
checkpoints
)
case Some(NonEmptyList(destination, destinations @ head :: tail)) =>
// If we can travel to more than one destination, we are going to try all in order.
val newCheckpoints = destinations.map { altDestination =>
val newDestinations = NonEmptyList(head = destination, tail = destinations.filterNot(_ == altDestination))
State(
currentAirport = altDestination,
availableDestinations.updated(key = currentAirport, value = newDestinations),
currentAirport :: solution
)
}
loop(
currentState = State(
currentAirport = destination,
availableDestinations.updated(key = currentAirport, value = NonEmptyList(head, tail)),
currentAirport :: solution
),
newCheckpoints ::: checkpoints
)
}
}
}
val availableDestinations = tickets.groupByNel(_.from).view.mapValues(_.map(_.to).sorted).toMap
loop(
currentState = State(
currentAirport = start,
availableDestinations,
solution = List.empty
),
checkpoints = List.empty
)
}
}
You can see the code running here.
来源:https://stackoverflow.com/questions/64776981/functional-stream-programming-for-the-graph-problem-reconstruct-itinerary