问题
I am doing
a_df = a_df.merge(b_df, how='left', on=['col1', col2])
After this, a_df
actually has more rows than before the operation. How is this possible?
They both have millions of rows, so it's hard for me to narrow down the problem. Probably I am missing something about how left merge works.
回答1:
Problem is with duplicates, so instead left join merge
return all combination of dupplicates pairs of both DataFrame
s, check sample below:
a_df = pd.DataFrame({'A':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'col1':[5,5,5,9,9,9],
'col2':list('aaabbb')})
print (a_df)
A B C D col1 col2
0 a 4 7 1 5 a
1 b 5 8 3 5 a
2 c 4 9 5 5 a
3 d 5 4 7 9 b
4 e 5 2 1 9 b
5 f 4 3 0 9 b
b_df = pd.DataFrame({'E':[7,8,0,1],
'F':list('efgh'),
'col1':[5,5,9,9],
'col2':list('aabb')})
print (b_df)
E F col1 col2
0 7 e 5 a
1 8 f 5 a
2 0 g 9 b
3 1 h 9 b
a_df = a_df.merge(b_df, how='left', on=['col1', 'col2'])
print (a_df)
A B C D col1 col2 E F
0 a 4 7 1 5 a 7 e
1 a 4 7 1 5 a 8 f
2 b 5 8 3 5 a 7 e
3 b 5 8 3 5 a 8 f
4 c 4 9 5 5 a 7 e
5 c 4 9 5 5 a 8 f
6 d 5 4 7 9 b 0 g
7 d 5 4 7 9 b 1 h
8 e 5 2 1 9 b 0 g
9 e 5 2 1 9 b 1 h
10 f 4 3 0 9 b 0 g
11 f 4 3 0 9 b 1 h
Solution1 is remove duplicates in second DataFrame
:
b_df = b_df.drop_duplicates(['col1', 'col2'])
print (b_df)
E F col1 col2
0 7 e 5 a
2 0 g 9 b
a_df = a_df.merge(b_df, how='left', on=['col1', 'col2'])
print (a_df)
A B C D col1 col2 E F
0 a 4 7 1 5 a 7 e
1 b 5 8 3 5 a 7 e
2 c 4 9 5 5 a 7 e
3 d 5 4 7 9 b 0 g
4 e 5 2 1 9 b 0 g
5 f 4 3 0 9 b 0 g
Solution2 is create unique values of pairs col1
and col2
by aggregation:
b_df = b_df.groupby(['col1', 'col2'], as_index=False).agg({'E':'mean', 'F': ','.join})
print (b_df)
col1 col2 E F
0 5 a 7.5 e,f
1 9 b 0.5 g,h
a_df = a_df.merge(b_df, how='left', on=['col1', 'col2'])
print (a_df)
A B C D col1 col2 E F
0 a 4 7 1 5 a 7.5 e,f
1 b 5 8 3 5 a 7.5 e,f
2 c 4 9 5 5 a 7.5 e,f
3 d 5 4 7 9 b 0.5 g,h
4 e 5 2 1 9 b 0.5 g,h
5 f 4 3 0 9 b 0.5 g,h
Also is possible check all dupes in df_b
by duplicated and boolean indexing:
print (b_df[b_df.duplicated(['col1', 'col2'], keep=False)])
E F col1 col2
0 7 e 5 a
1 8 f 5 a
2 0 g 9 b
3 1 h 9 b
来源:https://stackoverflow.com/questions/51665680/pandas-dataframe-merge-ends-up-with-more-rows