Building LDAvis plots using phrase tokens instead of single word tokens

孤街浪徒 提交于 2021-01-29 07:47:36

问题


My question is very simple. How can one build ldavis's frequentist topic modeling plots with phrase tokens instead of single-word tokens using the text2vec package in R.

Currently, the word tokenizer tokens = word_tokenizer(tokens) works great but is there a phrase or ngram tokenizer functionality to enable building ldavis topic models and corresponding plots with phrases instead of words?

If not, how might such a code be constructed? Is this even methodologically sound or advisable?

来源:https://stackoverflow.com/questions/64504592/building-ldavis-plots-using-phrase-tokens-instead-of-single-word-tokens

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!