R, How to accumulate values in a list column, based on multiple criteria

时光毁灭记忆、已成空白 提交于 2021-01-29 06:37:15

问题


I have a dataset of patients getting treatments in various hospitals (in-patient only) wherein some analysis has revealed several inconsistencies. One of these was that - software was allowing patients to get admission without closure of their previously open case_id.

In order to understand it better, let us consider the sample dataset

sample data

dput(df)

df <- structure(list(case_id = 1:22, patient_id = c(1L, 1L, 1L, 1L, 
1L, 1L, 1L, 2L, 2L, 2L, 1L, 3L, 3L, 3L, 4L, 4L, 5L, 5L, 6L, 7L, 
8L, 8L), pack_id = c(12L, 62L, 59L, 68L, 77L, 86L, 20L, 55L, 
86L, 72L, 7L, 54L, 75L, 26L, 21L, 12L, 49L, 35L, 51L, 31L, 10L, 
54L), hosp_id = c(1L, 1L, 2L, 2L, 1L, 1L, 2L, 3L, 3L, 4L, 2L, 
3L, 3L, 3L, 4L, 5L, 6L, 6L, 7L, 7L, 8L, 8L), admn_date = structure(c(18262, 
18264, 18265, 18266, 18277, 18279, 18283, 18262, 18264, 18277, 
18287, 18275, 18301, 18291, 18366, 18374, 18309, 18319, 18364, 
18303, 18328, 18341), class = "Date"), discharge_date = structure(c(18275, 
18276, 18271, 18275, 18288, 18280, 18286, 18275, 18276, 18288, 
18291, 18283, 18309, 18297, 18375, 18381, 18347, 18328, 18367, 
18309, 18341, 18344), class = "Date")), row.names = c(NA, -22L
), class = "data.frame")

> df
   case_id patient_id pack_id hosp_id  admn_date discharge_date
1       1          1      12       1 2020-01-01     2020-01-14
2       2          1      62       1 2020-01-03     2020-01-15
3       3          1      59       2 2020-01-04     2020-01-10
4       4          1      68       2 2020-01-05     2020-01-14
5       5          1      77       1 2020-01-16     2020-01-27
6       6          1      86       1 2020-01-18     2020-01-19
7       7          1      20       2 2020-01-22     2020-01-25
8       8          2      55       3 2020-01-01     2020-01-14
9       9          2      86       3 2020-01-03     2020-01-15
10     10          2      72       4 2020-01-16     2020-01-27
11     11          1       7       2 2020-01-26     2020-01-30
12     12          3      54       3 2020-01-14     2020-01-22
13     13          3      75       3 2020-02-09     2020-02-17
14     14          3      26       3 2020-01-30     2020-02-05
15     15          4      21       4 2020-04-14     2020-04-23
16     16          4      12       5 2020-04-22     2020-04-29
17     17          5      49       6 2020-02-17     2020-03-26
18     18          5      35       6 2020-02-27     2020-03-07
19     19          6      51       7 2020-04-12     2020-04-15
20     20          7      31       7 2020-02-11     2020-02-17
21     21          8      10       8 2020-03-07     2020-03-20
22     22          8      54       8 2020-03-20     2020-03-23

If we see in the data above, patient with id 1 got admission in hospital_1 (row-1) on 1 January and took a discharge on 14 January. Before this discharge, the patient took admission in same hospital again (row-2) ; and in hospital_2 again two times (rows 3 & 4) before finally getting all these four records closed on 15 January (row-2).

I have already filtered such records where the patient/s were admitted in multiple hospitals/same hospital multiple times; by the following code

Code tried

df_2 <- df %>% arrange(patient_id, admn_date, discharge_date) %>%
  mutate(sort_key = row_number()) %>%
  pivot_longer(c(admn_date, discharge_date), names_to ="activity", 
               values_to ="date", names_pattern = "(.*)_date") %>%
  mutate(activity = factor(activity, ordered = T, 
                           levels = c("admn", "discharge")),
         admitted = ifelse(activity == "admn", 1, -1)) %>%
  group_by(patient_id) %>%
  arrange(date, sort_key, activity, .by_group = TRUE) %>% 
  mutate (admitted = cumsum(admitted)) %>%
  ungroup()
  
 > df_2
# A tibble: 44 x 8
   case_id patient_id pack_id hosp_id sort_key activity  date       admitted
    <int>      <int>   <int>   <int>    <int> <ord>     <date>        <dbl>
 1      1          1      12       1        1 admn      2020-01-01        1
 2      2          1      62       1        2 admn      2020-01-03        2
 3      3          1      59       2        3 admn      2020-01-04        3
 4      4          1      68       2        4 admn      2020-01-05        4
 5      3          1      59       2        3 discharge 2020-01-10        3
 6      1          1      12       1        1 discharge 2020-01-14        2
 7      4          1      68       2        4 discharge 2020-01-14        1
 8      2          1      62       1        2 discharge 2020-01-15        0
 9      5          1      77       1        5 admn      2020-01-16        1
10      6          1      86       1        6 admn      2020-01-18        2
# ... with 34 more rows

With this code df_2 %>% filter(admitted >1 & activity == "admn") I can filter out the inconsistent records at once.

However, I want to include/generate one list column where-ever a new record/case_id has been opened without closing of any previous one, where the hsopital_ids get accumulated whenever activity == 'admn' and hospital_id is removed from existing entries whenever activity == 'discharge'. So basically my desired output for df_2 be something like

Desired OUTPUT

# A tibble: 44 x 8
   case_id patient_id pack_id hosp_id sort_key activity  date       admitted    open_records
    <int>      <int>   <int>   <int>    <int> <ord>     <date>        <dbl>     <list>
 1      1          1      12       1        1 admn      2020-01-01        1     1
 2      2          1      62       1        2 admn      2020-01-03        2     1, 1
 3      3          1      59       2        3 admn      2020-01-04        3     1, 1, 2
 4      4          1      68       2        4 admn      2020-01-05        4     1, 1, 2, 2
 5      3          1      59       2        3 discharge 2020-01-10        3     1, 1, 2
 6      1          1      12       1        1 discharge 2020-01-14        2     1, 2
 7      4          1      68       2        4 discharge 2020-01-14        1     1,
 8      2          1      62       1        2 discharge 2020-01-15        0     <NULL>
 9      5          1      77       1        5 admn      2020-01-16        1     1
10      6          1      86       1        6 admn      2020-01-18        2     1, 1
# ... with 34 more rows

NOTE I am aware that list column won't be displayed in the tibble/data.frame like the one I have shown for explanation purpose only. However, if there is any method by which that can be printed I would like to know about that for sure.

MOREOVER If there is any better strategy to store the hospital ids in the column instead of generating list column, I would also like to know about that for sure.


回答1:


If you don't mind using a loop

library(stringi)

df3 <- df2
df3$open_records <- NA
df3$hosp_id <- as.character(df3$hosp_id) #makes pasting easier

for(i in 1:nrow(df3)){
  #if re-admn
  if(df3$activity[i] == "admn"){
    df3$open_records[i] <- paste(lag(df3$open_records, default = "")[i],
                                 df3$hosp_id[i],
                                 sep = ",")
  #we'll handle pretty commas later
  }
  
  #if discharge
  if(df3$activity[i] == "discharge"){
    df3$open_records[i] <- sub(df3$hosp_id[i], "",
                               stri_reverse(df3$open_records[i-1]))
  #sub out one hospital if discharge
  #we reverse the string before removing to get the last hosp_id
  }
  
  #if admitted == 0
  if(df3$admitted[i] == 0) df3$open_records[i] <- NA
  
  #if just starting the group
  if(df3$activity[i] == "admn" & df3$admitted[i] == 1){
    df3$open_records[i] <- df3$hosp_id[i]
  }
}
  
#comma clean
df3$open_records <- gsub("^,*|(?<=,),|,*$", "", df3$open_records, perl=T)
df3$open_records <- gsub(",", ", ", df3$open_records)

If your dataset is really large this might not be optimal. It might be worth it to add next() commands to each if statement, too (if you do this this, I think it makes sense to move the starting group if statement to the top of the loop).

(comma clean source: Removing multiple commas and trailing commas using gsub)

EDIT, based on need to not use loop

library(tidyverse)

paste3 <- function(out, input, activity, sep = ",") {
  if (activity == "admn") {
    paste(out, input, sep = sep)
  } else
    if (activity == "discharge") {
      sub(input, "", out)
    }
}

df4 <- df2 %>%
  mutate(temp_act = lead(activity)) %>%
  mutate(open_records = accumulate2(hosp_id, head(temp_act, -1), paste3)
  ) %>%
  select(-temp_act)


df4$open_records <- gsub("^,*|(?<=,),|,*$", "", df4$open_records, perl=T)
df4$open_records <- gsub(",", ", ", df4$open_records)

I noticed that patients can be admitted to the same hospital more than once concurrently. One thing you might want to consider is concatenating the case_id and the hosp_id so instead of removing the first matching hosp_id when a discharge occurs, you can remove the one that corresponds to the correct case_id. (Replace hosp_id in the code with your new variable.)

This doesn't show up in your sample code, but if someone has open_records of 2, 1, 2, 1, 2 and is discharged from their 3rd admittance, my code will return 1, 2, 1, 2 when you probably want 2, 1, 1, 2.



来源:https://stackoverflow.com/questions/65388891/r-how-to-accumulate-values-in-a-list-column-based-on-multiple-criteria

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!