问题
I have simple UDPServer, which works with multiprocessing.
I want to create a list, that contains information about all clients.
I use Manager, but I don't understand, how to append information in list - I need transfer Manager`s object to handle, but how? My way with new attribute does not work.
import multiprocessing
from socketserver import UDPServer, ForkingMixIn, DatagramRequestHandler
from socket import socket, AF_INET, SOCK_DGRAM
from settings import host, port, number_of_connections
class ChatHandler(DatagramRequestHandler):
def handle(self):
cur_process = multiprocessing.current_process()
data = self.request[0].strip()
socket = self.request[1]
ChatHandler.clients.append(self.client_address) # error here
print(ChatHandler.clients)
class ChatServer(ForkingMixIn, UDPServer):
pass
if __name__ == '__main__':
server = ChatServer((host, port), ChatHandler)
ChatHandler.clients = multiprocessing.Manager().list()
server_process = multiprocessing.Process(target=server.serve_forever)
server_process.daemon = False
server_process.start()
How to fix that? Thanks!
Output:
Exception happened during processing of request from ('127.0.0.1', 55679)
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/managers.py", line 724, in _callmethod
conn = self._tls.connection
AttributeError: 'ForkAwareLocal' object has no attribute 'connection'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/socketserver.py", line 584, in process_request
self.finish_request(request, client_address)
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/socketserver.py", line 344, in finish_request
self.RequestHandlerClass(request, client_address, self)
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/socketserver.py", line 665, in __init__
self.handle()
File "server.py", line 15, in handle
ChatHandler.clients.append(self.client_address)
File "<string>", line 2, in append
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/managers.py", line 728, in _callmethod
self._connect()
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/managers.py", line 715, in _connect
conn = self._Client(self._token.address, authkey=self._authkey)
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/connection.py", line 495, in Client
c = SocketClient(address)
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/connection.py", line 624, in SocketClient
s.connect(address)
FileNotFoundError: [Errno 2] No such file or directory
回答1:
The problem is that you're letting the main process finish its execution immediately after you start the worker process. When the process that created the multiprocessing.Manager
finishes its execution, the Manager
server gets shut down, which means your shared list object is now useless. This happens because the Manager
object registers it's shutdown
function as a "finalizer" with the multiprocessing
module, which means it will be run just before the process exits. Here's the code that registers it, in BaseManager.__init__
:
# register a finalizer
self._state.value = State.STARTED
self.shutdown = util.Finalize(
self, type(self)._finalize_manager,
args=(self._process, self._address, self._authkey,
self._state, self._Client),
exitpriority=0
)
Here's the code that actually does the shut down:
@staticmethod
def _finalize_manager(process, address, authkey, state, _Client):
'''
Shutdown the manager process; will be registered as a finalizer
'''
if process.is_alive():
util.info('sending shutdown message to manager')
try:
conn = _Client(address, authkey=authkey)
try:
dispatch(conn, None, 'shutdown')
finally:
conn.close()
except Exception:
pass
process.join(timeout=1.0)
if process.is_alive():
util.info('manager still alive')
if hasattr(process, 'terminate'):
util.info('trying to `terminate()` manager process')
process.terminate()
process.join(timeout=0.1)
if process.is_alive():
util.info('manager still alive after terminate')
state.value = State.SHUTDOWN
try:
del BaseProxy._address_to_local[address]
except KeyError:
pass
The fix is simple - don't let the main process complete immediately you start the process that runs the UDP server, by calling server_process.join()
:
import multiprocessing
from socketserver import UDPServer, ForkingMixIn, DatagramRequestHandler
from socket import socket, AF_INET, SOCK_DGRAM
from settings import host, port, number_of_connections
class ChatHandler(DatagramRequestHandler):
def handle(self):
cur_process = multiprocessing.current_process()
data = self.request[0].strip()
socket = self.request[1]
ChatHandler.clients.append(self.client_address) # error here
print(ChatHandler.clients)
class ChatServer(ForkingMixIn, UDPServer):
pass
if __name__ == '__main__':
server = ChatServer((host, port), ChatHandler)
ChatHandler.clients = multiprocessing.Manager().list()
server_process = multiprocessing.Process(target=server.serve_forever)
server_process.daemon = False
server_process.start()
server_process.join() # This fixes the issue.
回答2:
The following shows an example of a UDP server and a shared list.
parent code creates a Manager, a managed list, and passed it to
start_server()
this function in turn actually starts the server, storing the shared list such that the server -- and its handler -- can access it
when a packet arrives, the
handle()
method is triggered. This accesses the server usingself.server
, and the shared list withself.server.client_list
, an attribute on the ChatServer instance.
I did testing by starting the server, waiting a second, then sending a UDP packet "beer" using the netcat
command. For some reason it sends Xs first, and each output is duplicated. This is a bug, but the code should point you in the right direction.
source
import multiprocessing as mp, signal, sys
from SocketServer import (
UDPServer, ForkingMixIn, DatagramRequestHandler
)
class ChatHandler(DatagramRequestHandler):
def handle(self):
data,_socket = self.request
curproc = mp.current_process()
print '{}: {}'.format(
curproc,
dict(
data_len=len(data),
data=data.strip(),
client=self.client_address,
))
self.server.client_list.append(
self.client_address)
print('{}: {}'.format(
curproc,
dict(client_list=self.server.client_list),
))
class ChatServer(ForkingMixIn, UDPServer):
client_list = None
def start_server(client_list):
server = ChatServer(('', 9876), ChatHandler)
server.client_list = client_list
server.serve_forever()
if __name__ == '__main__':
clist = mp.Manager().list()
mp.Process(
target=start_server, args=[clist],
name='udpserver',
).start()
signal.alarm(5) # die in 5 seconds
signal.pause() # wait for control-C or alarm
test run
(sleep 1 ; echo beer | nc -vvu localhost 9876 ) &
python ./mshared.py
<Process(udpserver, started)>: {'data': 'X', 'client': ('127.0.0.1', 49399), 'data_len': 1}
<Process(udpserver, started)>: {'data': 'X', 'client': ('127.0.0.1', 49399), 'data_len': 1}
<Process(udpserver, started)>: {'client_list': <ListProxy object, typeid 'list' at 0x1774650>}
<Process(udpserver, started)>: {'client_list': <ListProxy object, typeid 'list' at 0x1774650>}
<Process(udpserver, started)>: {'data': 'X', 'client': ('127.0.0.1', 49399), 'data_len': 1}
<Process(udpserver, started)>: {'client_list': <ListProxy object, typeid 'list' at 0x1774650>}
<Process(udpserver, started)>: {'data': 'X', 'client': ('127.0.0.1', 49399), 'data_len': 1}
<Process(udpserver, started)>: {'client_list': <ListProxy object, typeid 'list' at 0x1774650>}
Connection to localhost 9876 port [udp/*] succeeded!
<Process(udpserver, started)>: {'data': 'X', 'client': ('127.0.0.1', 49399), 'data_len': 1}
<Process(udpserver, started)>: {'client_list': <ListProxy object, typeid 'list' at 0x1774650>}
<Process(udpserver, started)>: {'data': 'beer', 'client': ('127.0.0.1', 49399), 'data_len': 5}
<Process(udpserver, started)>: {'client_list': <ListProxy object, typeid 'list' at 0x1774650>}
回答3:
if you're using it anyway like the following way you might require to look at the length of list you're passing or hardcoded count of workers it might be exceeding your machine's capability:
pool = Pool(len(somelist))
# call the function 'somefunction' in parallel for each somelist.
pool.map(somefunction, somelist)
i reduced the workers it resolved the issue for me.
来源:https://stackoverflow.com/questions/43903884/attributeerror-when-assigning-to-a-manager-dict-in-a-child-process