问题
I noted that Scipy must be storing some intermediate arrays when doing matrix multiplication. I assume this can be helpful in some cases, but it is a pain sometimes. Consider the following example:
from scipy.sparse import coo_matrix
n = 100000000000
row = np.array([0, 0])
col = np.array([0, n-1])
data = np.array([1, 1])
A = coo_matrix((data, (row, col)), shape=(2, n))
Yes, this is a very large matrix. However it has only two nonzero values. The result of B = A.dot(A.T)
can be evaluated by hand since it has only one nonzero value. The matrix B
is such that B[0, 0] = 2
and zero elsewhere. When I try to run this I get Memory Error, you can see the Traceback below:
---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
<ipython-input-32-3e0d3e3c3f13> in <module>
----> 1 A.dot(A.T)
~/anaconda3/envs/tfx/lib/python3.7/site-packages/scipy/sparse/base.py in dot(self, other)
361
362 """
--> 363 return self * other
364
365 def power(self, n, dtype=None):
~/anaconda3/envs/tfx/lib/python3.7/site-packages/scipy/sparse/base.py in __mul__(self, other)
479 if self.shape[1] != other.shape[0]:
480 raise ValueError('dimension mismatch')
--> 481 return self._mul_sparse_matrix(other)
482
483 # If it's a list or whatever, treat it like a matrix
~/anaconda3/envs/tfx/lib/python3.7/site-packages/scipy/sparse/base.py in _mul_sparse_matrix(self, other)
538
539 def _mul_sparse_matrix(self, other):
--> 540 return self.tocsr()._mul_sparse_matrix(other)
541
542 def __rmul__(self, other): # other * self
~/anaconda3/envs/tfx/lib/python3.7/site-packages/scipy/sparse/compressed.py in _mul_sparse_matrix(self, other)
494
495 major_axis = self._swap((M, N))[0]
--> 496 other = self.__class__(other) # convert to this format
497
498 idx_dtype = get_index_dtype((self.indptr, self.indices,
~/anaconda3/envs/tfx/lib/python3.7/site-packages/scipy/sparse/compressed.py in __init__(self, arg1, shape, dtype, copy)
35 arg1 = arg1.copy()
36 else:
---> 37 arg1 = arg1.asformat(self.format)
38 self._set_self(arg1)
39
~/anaconda3/envs/tfx/lib/python3.7/site-packages/scipy/sparse/base.py in asformat(self, format, copy)
324 # Forward the copy kwarg, if it's accepted.
325 try:
--> 326 return convert_method(copy=copy)
327 except TypeError:
328 return convert_method()
~/anaconda3/envs/tfx/lib/python3.7/site-packages/scipy/sparse/coo.py in tocsr(self, copy)
402 col = self.col.astype(idx_dtype, copy=False)
403
--> 404 indptr = np.empty(M + 1, dtype=idx_dtype)
405 indices = np.empty_like(col, dtype=idx_dtype)
406 data = np.empty_like(self.data, dtype=upcast(self.dtype))
MemoryError:
The output is a 2 x 2 matrix, so it doesn't matter if it is dense or not. What the program is trying to do to cause this failure at such simple problem? How can I fix this behavior?
Thank you.
回答1:
COO is a format that does not lend itself well to math for reasons I will leave to the reader.
In this edge condition case, I think you would be best-served by solving the problem directly:
from scipy.sparse import coo_matrix
import numpy as np
n = 100000000000
row = np.array([0, 0])
col = np.array([0, n-1])
data = np.array([1, 1])
A = coo_matrix((data, (row, col)), shape=(2, n))
B = A.tocsr()
C = A.tocsr().T
n, m = B.shape[0], C.shape[1]
out_arr = np.zeros((n, m), dtype=A.dtype)
for i in range(n):
for j in range(m):
out_arr[i, j] = B[i, :].multiply(C[:, j].T).data.sum()
For any problem with a reasonably small n
& m
this workaround will be sufficient.
回答2:
If you look into the source code, you'll find that eventually A.T
(the operand of dot
in A.dot(A.T)
) is converted to a csr_matrix
, and that matrix has an attribute called indptr
that has length n+1
. With your value of n
, indptr
for that csr_matrix
will require hundreds of gigabytes of memory.
来源:https://stackoverflow.com/questions/63106851/scipy-sparse-memory-explosion-with-simple-matrix-multiplication