问题
I'm trying to perform Monte Carlo Simulations using quasi-random standard normal numbers. I understand that we can use Sobol sequences to generate uniform numbers, and then use probability integral transform to convert them to standard normal numbers. My code gives unrealistic values of the simulated asset path:
import sobol_seq
import numpy as np
from scipy.stats import norm
def i4_sobol_generate_std_normal(dim_num, n, skip=1):
"""
Generates multivariate standard normal quasi-random variables.
Parameters:
Input, integer dim_num, the spatial dimension.
Input, integer n, the number of points to generate.
Input, integer SKIP, the number of initial points to skip.
Output, real np array of shape (n, dim_num).
"""
sobols = sobol_seq.i4_sobol_generate(dim_num, n, skip)
normals = norm.ppf(sobols)
return normals
def GBM(Ttm, TradingDaysInAYear, NoOfPaths, UnderlyingPrice, RiskFreeRate, Volatility):
dt = float(Ttm) / TradingDaysInAYear
paths = np.zeros((TradingDaysInAYear + 1, NoOfPaths), np.float64)
paths[0] = UnderlyingPrice
for t in range(1, TradingDaysInAYear + 1):
rand = i4_sobol_generate_std_normal(1, NoOfPaths)
lRand = []
for i in range(len(rand)):
a = rand[i][0]
lRand.append(a)
rand = np.array(lRand)
paths[t] = paths[t - 1] * np.exp((RiskFreeRate - 0.5 * Volatility ** 2) * dt + Volatility * np.sqrt(dt) * rand)
return paths
GBM(1, 252, 8, 100., 0.05, 0.5)
array([[1.00000000e+02, 1.00000000e+02, 1.00000000e+02, ...,
1.00000000e+02, 1.00000000e+02, 1.00000000e+02],
[9.99702425e+01, 1.02116774e+02, 9.78688323e+01, ...,
1.00978615e+02, 9.64128959e+01, 9.72154915e+01],
[9.99404939e+01, 1.04278354e+02, 9.57830834e+01, ...,
1.01966807e+02, 9.29544649e+01, 9.45085180e+01],
...,
[9.28295879e+01, 1.88049044e+04, 4.58249200e-01, ...,
1.14117599e+03, 1.08089096e-02, 8.58754653e-02],
[9.28019642e+01, 1.92029616e+04, 4.48483141e-01, ...,
1.15234371e+03, 1.04211828e-02, 8.34842557e-02],
[9.27743486e+01, 1.96094448e+04, 4.38925214e-01, ...,
1.16362072e+03, 1.00473641e-02, 8.11596295e-02]])
Values like 8.11596295e-02 should not be generated, hence I think there is something wrong in the code. If I use standard normal draws from the numpy
library rand = np.random.standard_normal(NoOfPaths)
then the price matches with the Black Scholes price. Hence I think the problem is with the random number generator. The value 8.11596295e-02
refers to a price in a path, and it's very unlikely that the price would come down from 100 (initial price) to 8.11596295e-02
.
References: 1, 2, 3.
回答1:
It appears there is a bug in sobol_seq
. Anaconda, python 3.7, 64bit, Windows 10 x64, installed sobol_seq
via pip
pip install sobol_seq
# Name Version Build Channel
sobol-seq 0.1.2 pypi_0 pypi
Simple code
print(sobol_seq.i4_sobol_generate(1, 1, 0))
print(sobol_seq.i4_sobol_generate(1, 1, 1))
print(sobol_seq.i4_sobol_generate(1, 1, 2))
print(sobol_seq.i4_sobol_generate(1, 1, 3))
produced output
[[0.5]]
[[0.5]]
[[0.5]]
[[0.5]]
Code from http://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.html, sobol_lib.py behaves reasonable (well, except first point).
Well, enclosed code looks like it might work, keeping seed together with sampled array. Slow, though...
import sobol_seq
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
def i4_sobol_generate_std_normal(dim_num, seed, size=None):
"""
Generates multivariate standard normal quasi-random variables.
Parameters:
Input, integer dim_num, the spatial dimension.
Input, integer n, the number of points to generate.
Input, integer seed, initial seed
Output, real np array of shape (n, dim_num).
"""
if size is None:
q, seed = sobol_seq.i4_sobol(dim_num, seed)
normals = norm.ppf(q)
return (normals, seed)
if isinstance(size, int) or isinstance(size, np.int32) or isinstance(size, np.int64) or isinstance(size, np.int16):
rc = np.empty((dim_num, size))
for k in range(size):
q, seed = sobol_seq.i4_sobol(dim_num, seed)
rc[:,k] = norm.ppf(q)
return (rc, seed)
else:
raise ValueError("Size type is not recognized")
return None
seed = 1
x, seed = i4_sobol_generate_std_normal(1, seed)
print(x)
x, seed = i4_sobol_generate_std_normal(1, seed)
print(x)
seed = 1
x, seed = i4_sobol_generate_std_normal(1, seed, size=10)
print(x)
x, seed = i4_sobol_generate_std_normal(1, seed, size=1000)
print(x)
hist, bins = np.histogram(x, bins=20, range=(-2.5, 2.5), density=True)
plt.bar(bins[:-1], hist, width = 0.22, align='edge')
plt.show()
Here is the picture
来源:https://stackoverflow.com/questions/55788739/monte-carlo-simulations-in-python-using-quasi-random-standard-normal-numbers-usi