问题
Consider the following function that computes the integral or floating-point modulo depending on the argument type, at compile-time:
template<typename T>
constexpr T modulo(const T x, const T y)
{
return (std::is_floating_point<T>::value) ? (x < T() ? T(-1) : T(1))*((x < T() ? -x : x)-static_cast<long long int>((x/y < T() ? -x/y : x/y))*(y < T() ? -y : y))
: (static_cast<typename std::conditional<std::is_floating_point<T>::value, int, T>::type>(x)
%static_cast<typename std::conditional<std::is_floating_point<T>::value, int, T>::type>(y));
}
Can the body of this function be improved ? (I need to have a single function for both integer and floating-point types).
回答1:
Here's one way to clean this up:
#include <type_traits>
#include <cmath>
template <typename T> // integral? floating point?
bool remainder_impl(T a, T b, std::true_type, std::false_type) constexpr
{
return a % b; // or whatever
}
template <typename T> // integral? floating point?
bool remainder_impl(T a, T b, std::false_type, std::true_type) constexpr
{
return std::fmod(a, b); // or substitute your own expression
}
template <typename T>
bool remainder(T a, T b) constexpr
{
return remainder_impl<T>(a, b,
std::is_integral<T>(), std::is_floating_point<T>());
}
If you try and call this function on a type that's not arithmetic, you'll get a compiler error.
回答2:
I would rather define it this way (template aliases + template overloading):
#include <type_traits>
using namespace std;
// For floating point types
template<typename T, typename enable_if<is_floating_point<T>::value>::type* p = nullptr>
constexpr T modulo(const T x, const T y)
{
return (x < T() ? T(-1) : T(1)) * (
(x < T() ? -x : x) -
static_cast<long long int>((x/y < T() ? -x/y : x/y)) * (y < T() ? -y : y)
);
}
// For non-floating point types
template<typename T>
using TypeToCast = typename conditional<is_floating_point<T>::value, int, T>::type;
template<typename T, typename enable_if<!is_floating_point<T>::value>::type* p = nullptr>
constexpr T modulo(const T x, const T y)
{
return (static_cast<TypeToCast<T>>(x) % static_cast<TypeToCast<T>>(y));
}
int main()
{
constexpr int x = modulo(7.0, 3.0);
static_assert((x == 1.0), "Error!");
return 0;
}
It is lengthier but cleaner IMO. I am assuming that by "single function" you mean "something that can be invoked uniformly". If you mean "a single function template", then I would just keep the template alias improvement and leave the overload. But then, as mentioned in another answer, it would not be clear why you do need to have one single function template.
回答3:
You ask,
“Can the body of this function be improved?”
Certainly. Right now it is a spaghetti mess:
template<typename T>
constexpr T modulo(const T x, const T y)
{
return (std::is_floating_point<T>::value) ? (x < T() ? T(-1) : T(1))*((x < T() ? -x : x)-static_cast<long long int>((x/y < T() ? -x/y : x/y))*(y < T() ? -y : y))
: (static_cast<typename std::conditional<std::is_floating_point<T>::value, int, T>::type>(x)
%static_cast<typename std::conditional<std::is_floating_point<T>::value, int, T>::type>(y));
}
You clarify that …
“(I need to have a single function for both integer and floating-point types)”
Well the template is not a single function. It’s a template. Functions are generated from it.
This means your question builds on a false assumption.
With that assumption removed, one way to simplify the function body, which you should do as a matter of course, is to specialize the template for floating point types versus other numeric types. To do that put the function template implementation in a class (because C++ does not support partial specialization of functions, only of classes).
Then you can employ various formatting tricks, including the "0?0 : blah" trick to make the function more readable, with lines and indentation and stuff! :-)
Addendum: delving into your code I see that you cast haphazardly to long int
and int
with disregard of the invoker's types. That's ungood. It is probably a good idea to write up a bunch of automated test cases, invoking the function with various argument types and big/small values.
回答4:
template <class T>
constexpr
T
modulo(T x, T y)
{
typedef typename std::conditional<std::is_floating_point<T>::value,
int,
T
>::type Int;
return std::is_floating_point<T>() ?
x - static_cast<long long>(x / y) * y :
static_cast<Int>(x) % static_cast<Int>(y);
}
回答5:
I believe there is simpler:
// Special available `%`
template <typename T, typename U>
constexpr auto modulo(T const& x, U const& y) -> decltype(x % y) {
return x % y;
}
Note: based on detection of %
so also works for custom types as long as they implement the operator. I also made it mixed type while I was at it.
// Special floating point
inline constexpr float modulo(float x, float y) { return /*something*/; }
inline constexpr double modulo(double x, double y) { return /*something*/; }
inline constexpr long double modulo(long double x, long double y) { return /*something*/; }
Note: it would cleaner to have fmod
available unfortunately I do not believe it is constexpr
; therefore I chose to have non-template modulos for the floating point types which allows you to perform magic to compute the exact modulo possibly based on the binary representation of the type.
回答6:
You can do that much simpler if you want:
template<typename A, typename B>
constexpr auto Modulo(const A& a, const B& b) -> decltype(a - (b * int(a/b)))
{
return a - (b * int(a/b));
}
来源:https://stackoverflow.com/questions/14294659/compile-time-constexpr-float-modulo