问题
Here is the algorithm of what I want to do with R
:
- Simulate 10 time series data set from
ARIMA
model througharima.sim()
function - Split the series into sub-series of possible
2s
,3s
,4s
,5s
,6s
,7s
,8s
, and9s
. - For each size take a resample the blocks with replacement, for new series and obtain the best
ARIMA
model from the subseries from each block size throughauto.arima()
function. - Obtain for each subseries of each block sizes
RMSE
.
The below R
function get that done.
## Load packages and prepare multicore process
library(forecast)
library(future.apply)
plan(multisession)
library(parallel)
library(foreach)
library(doParallel)
n_cores <- detectCores()
cl <- makeCluster(n_cores)
registerDoParallel(cores = detectCores())
## simulate ARIMA(1,0, 0)
#n=10; phi <- 0.6; order <- c(1, 0, 0)
bootstrap1 <- function(n, phi){
ts <- arima.sim(n, model = list(ar=phi, order = c(1, 0, 0)), sd = 1)
########################################################
## create a vector of block sizes
t <- length(ts) # the length of the time series
lb <- seq(n-2)+1 # vector of block sizes to be 1 < l < n (i.e to be between 1 and n exclusively)
########################################################
## This section create matrix to store block means
BOOTSTRAP <- matrix(nrow = 1, ncol = length(lb))
colnames(BOOTSTRAP) <-lb
########################################################
## This section use foreach function to do detail in the brace
BOOTSTRAP <- foreach(b = 1:length(lb), .combine = 'cbind') %do%{
l <- lb[b]# block size at each instance
m <- ceiling(t / l) # number of blocks
blk <- split(ts, rep(1:m, each=l, length.out = t)) # divides the series into blocks
######################################################
res<-sample(blk, replace=T, 10) # resamples the blocks
res.unlist <- unlist(res, use.names = FALSE) # unlist the bootstrap series
train <- head(res.unlist, round(length(res.unlist) - 10)) # Train set
test <- tail(res.unlist, length(res.unlist) - length(train)) # Test set
nfuture <- forecast::forecast(train, model = forecast::auto.arima(train), lambda=0, biasadj=TRUE, h = length(test))$mean # makes the `forecast of test set
RMSE <- Metrics::rmse(test, nfuture) # RETURN RMSE
BOOTSTRAP[b] <- RMSE
}
BOOTSTRAPS <- matrix(BOOTSTRAP, nrow = 1, ncol = length(lb))
colnames(BOOTSTRAPS) <- lb
BOOTSTRAPS
return(list(BOOTSTRAPS))
}
Calling the function
bootstrap1(10, 0.6)
I get the below result:
## 2 3 4 5 6 7 8 9
## [1,] 0.8920703 0.703974 0.6990448 0.714255 1.308236 0.809914 0.5315476 0.8175382
I want to repeat the above step 1
to step 4
chronologically, then I think of Monte Carlo
technology in R
. Thus, I load its package and run the below function:
param_list=list("n"=10, "phi"=0.6)
library(MonteCarlo)
MC_result<-MonteCarlo(func = bootstrap1, nrep=3, param_list = param_list)
expecting to get a like of the below result in matrix
form:
## [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,] 0.8920703 0.703974 0.6990448 0.714255 1.308236 0.809914 0.5315476 0.8175382
## [2,] 0.8909836 0.8457537 1.095148 0.8918468 0.8913282 0.7894167 0.8911484 0.8694729
## [3,] 1.586785 1.224003 1.375026 1.292847 1.437359 1.418744 1.550254 1.30784
but I get the following error message:
Error in MonteCarlo(func = bootstrap1, nrep = 3, param_list = param_list) : func has to return a list with named components. Each component has to be scalar.
how can I find my way to obtain a desired result like the above and make the result reproducible?
EDIT
I want the expected R
that will run on Windows
回答1:
You get this error message because MonteCarlo expects bootstrap1()
to accept one parameter combination for the simulation and that it only returns one value (RMSE
) per replication. This is not the case here since the block length (lb
) is determined by the length of the simulated time series (n
) within bootstrap1
and so you will get results for n - 2
block lengths for each call.
A solution is to pass the block length as a parameter and rewrite bootstrap1()
appropriately:
library(MonteCarlo)
library(forecast)
library(Metrics)
# parameter grids
n <- 10 # length of time series
lb <- seq(n-2) + 1 # vector of block sizes
phi <- 0.6 # autoregressive parameter
reps <- 3 # monte carlo replications
# simulation function
bootstrap1 <- function(n, lb, phi) {
#### simulate ####
ts <- arima.sim(n, model = list(ar = phi, order = c(1, 0, 0)), sd = 1)
#### devide ####
m <- ceiling(n / lb) # number of blocks
blk <- split(ts, rep(1:m, each = lb, length.out = n)) # divide into blocks
#### resample ####
res <- sample(blk, replace = TRUE, 10) # resamples the blocks
res.unlist <- unlist(res, use.names = FALSE) # unlist the bootstrap series
#### train, forecast ####
train <- head(res.unlist, round(length(res.unlist) - 10)) # train set
test <- tail(res.unlist, length(res.unlist) - length(train)) # test set
nfuture <- forecast(train, # forecast
model = auto.arima(train),
lambda = 0, biasadj = TRUE, h = length(test))$mean
### metric ####
RMSE <- rmse(test, nfuture) # return RMSE
return(
list("RMSE" = RMSE)
)
}
param_list = list("n" = n, "lb" = lb, "phi" = phi)
To run the simulation, pass the parameters as well as bootstrap1()
to MonteCarlo()
. For the simulation to be carried out in parallel you need to set the number of cores via ncpus
. The MonteCarlo package uses snowFall, so it should run on Windows.
Note that I also set raw = T
(otherwise the outcomes would be averages over all replications). Setting the seed before will make the results reproducible.
set.seed(123)
MC_result <- MonteCarlo(func = bootstrap1,
nrep = reps,
ncpus = parallel::detectCores() - 1,
param_list = param_list,
export_also = list(
"packages" = c("forecast", "Metrics")
),
raw = T)
The result is an array. I think it's best to transform it into a data.frame via MakeFrame()
:
Frame <- MakeFrame(MC_result)
It's easy to get a reps x lb
matrix though:
matrix(Frame$RMSE, ncol = length(lb), dimnames = list(1:reps, lb))
来源:https://stackoverflow.com/questions/64222355/how-to-use-monte-carlo-for-arima-simulation-function-in-r-on-windows