[LNOI2014] LCA
题面
题解
水题。
对于一个区间\([l,r]\)的答案。
我们把它差分成\([1,r] - [1,l - 1]\)
然后因为右端点是固定的,用树剖+只有1个端点的莫队就解决了...
你谷恶评实在太严重了。
#include <bits/stdc++.h> const int maxn = 5e4 + 10; const int mod = 201314; template<class t> inline void read(t& res) { res = 0; char ch = getchar(); bool neg = 0; while (!isdigit(ch)) neg |= ch == '-', ch = getchar(); while (isdigit(ch)) res = (res << 1) + (res << 3) + (ch & 15), ch = getchar(); if (neg) res = -res; } int q, n, m, i, j, k, cntq; int hd[maxn], ver[maxn << 1], nxt[maxn << 1], ans[maxn]; struct Questions { int p, z, id; int type; Questions() { p = z = type = id = 0; } Questions(int _p, int _z, int i, int _t) { p = _p; z = _z; id = i; type = _t; } inline friend bool operator < (Questions a, Questions b) { return a.p < b.p; } } Q[maxn << 1]; inline void adde(int u, int v) { static int cnte = 0; ver[++cnte] = v; nxt[cnte] = hd[u]; hd[u] = cnte; return; } int s[maxn << 2], tag[maxn << 2]; inline void push_up(int u) { s[u] = (s[u << 1] + s[u << 1 | 1]) % mod; } inline void down(int u, int l, int r, int v) { s[u] += (r - l + 1) * v; tag[u] += v; } inline void push_down(int u, int l, int r) { int mid = (l + r) >> 1; down(u << 1, l, mid, tag[u]); down(u << 1 | 1, mid + 1, r, tag[u]); tag[u] = 0; } void segt_modify(int ml, int mr, int l, int r, int u, int v) { // printf("%d %d %d %d %d %d\n", ml, mr, l, r, u, v); if (ml <= l && r <= mr) return s[u] += (r - l + 1) * v, tag[u] += v, void(); int mid = (l + r) >> 1; push_down(u, l, r); if (ml <= mid) segt_modify(ml, mr, l, mid, u << 1, v); if (mid < mr) segt_modify(ml, mr, mid + 1, r, u << 1 | 1, v); push_up(u); } int segt_query(int ql, int qr, int l, int r, int u) { if (ql <= l && r <= qr) return s[u]; int mid = (l + r) >> 1, res = 0; push_down(u, l, r); if (ql <= mid) res += segt_query(ql, qr, l, mid, u << 1) % mod; res %= mod; if (mid < qr) res += segt_query(ql, qr, mid + 1, r, u << 1 | 1) % mod; res %= mod; return res; } namespace Tree_Chain { int hsn[maxn], sz[maxn], dep[maxn], fa[maxn], top[maxn]; int dfn[maxn], tim; void dfs1(int u, int pa) { dep[u] = dep[pa] + 1; fa[u] = pa; sz[u] = 1; for (int i = hd[u]; ~i; i = nxt[i]) { int v = ver[i]; if (v == pa) continue; dfs1(v, u); sz[u] += sz[v]; if (sz[v] > sz[ hsn[u] ]) hsn[u] = v; } } void dfs2(int u, int up) { top[u] = up; dfn[u] = ++tim; if (hsn[u]) dfs2(hsn[u], up); for (int i = hd[u]; ~i; i = nxt[i]) { int v = ver[i]; if (v == fa[u] || v == hsn[u]) continue; dfs2(v, v); } } void modify(int u, int v, int val) { while (top[u] != top[v]) { if(dep[ top[u] ] < dep[ top[v] ]) std::swap(u, v); segt_modify(dfn[ top[u] ], dfn[u], 1, n, 1, val); u = fa[ top[u] ]; } if (dep[u] > dep[v]) std::swap(u, v); segt_modify(dfn[u], dfn[v], 1, n, 1, val); } int query(int u, int v) { int res = 0; while (top[u] != top[v]) { //printf("%d %d\n", u, v); if (dep[ top[u] ] < dep[ top[v] ]) std::swap(u, v); res += segt_query(dfn[ top[u] ], dfn[u], 1, n, 1) % mod; res %= mod; u = fa[ top[u] ]; } if (dep[u] > dep[v]) std::swap(u, v); res += segt_query(dfn[u], dfn[v], 1, n, 1) % mod; res %= mod; return res; } } int main() { memset(hd, -1, sizeof(hd)); read(n); read(q); for (int i = 2, p; i <= n; i++) read(p), p++, adde(p, i), adde(i, p); Tree_Chain::dfs1(1, 0); Tree_Chain::dfs2(1, 1); for (int i = 1, l, r, z; i <= q; i++) { read(l); read(r); read(z); z++; Q[++cntq] = Questions(l, z, i, -1); Q[++cntq] = Questions(r + 1, z, i, 1); } std::sort(Q + 1, Q + cntq + 1); int p = 1; for (int i = 1; i <= cntq; i++) { while (p <= Q[i].p) Tree_Chain::modify(1, p++, 1); ans[ Q[i].id ] += Tree_Chain::query(1, Q[i].z) * Q[i].type; } for (int i = 1; i <= q; i++) printf("%d\n", (ans[i] + mod) % mod); return 0; }