一、LRU
Least Recently Used,即最近最少使用,当一个数据最近一段时间没有被访问,未来被访问的概率也很小。当空间被占满后,最先淘汰最近最少使用的数据。
二、LinkedHashMap
HashMap的存取是无序的,当我们希望其有序时,就可以使用LinkedHashMap。当LinkedHashMap的构造函数的accessOrder参数为false时,按插入顺序存取;当accessOrder为true时,按访问顺序存取(新插入的元素放在表尾,刚访问的元素也移动到表尾)。
LinkedHashMap的组成就是一个HashMap+双端链表。
插入:
插入Entry1
插入Entry2
插入Entry3
更新:
三、LRU的实现
思路:
- 固定缓存大小,需要给缓存分配一个固定的大小。
- 每次读取缓存都会改变缓存的使用时间,将缓存的存在时间重新刷新。
- 需要在缓存满了后,将最近最久未使用的缓存删除,再添加最新的缓存。
1、使用LinkedHashMap实现LRU
public class LRU1<K, V> {
private final int MAX_CACHE_SIZE;
private final float DEFAULT_LOAD_FACTORY = 0.75f;
LinkedHashMap<K, V> map;
public LRU1(int cacheSize) {
MAX_CACHE_SIZE = cacheSize;
int capacity = (int)Math.ceil(MAX_CACHE_SIZE / DEFAULT_LOAD_FACTORY) + 1;
/*
* 第三个参数设置为true,代表linkedlist按访问顺序排序,可作为LRU缓存
* 第三个参数设置为false,代表按插入顺序排序,可作为FIFO缓存
*/
map = new LinkedHashMap<K, V>(capacity, DEFAULT_LOAD_FACTORY, true) {
@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > MAX_CACHE_SIZE;
}
};
}
public synchronized void put(K key, V value) {
map.put(key, value);
}
public synchronized V get(K key) {
return map.get(key);
}
public synchronized void remove(K key) {
map.remove(key);
}
public synchronized Set<Map.Entry<K, V>> getAll() {
return map.entrySet();
}
@Override
public String toString() {
StringBuilder stringBuilder = new StringBuilder();
for (Map.Entry<K, V> entry : map.entrySet()) {
stringBuilder.append(String.format("%s: %s ", entry.getKey(), entry.getValue()));
}
return stringBuilder.toString();
}
public static void main(String[] args) {
LRU1<Integer, Integer> lru1 = new LRU1<>(5);
lru1.put(1, 1);
lru1.put(2, 2);
lru1.put(3, 3);
System.out.println(lru1);
lru1.get(1);
System.out.println(lru1);
lru1.put(4, 4);
lru1.put(5, 5);
lru1.put(6, 6);
System.out.println(lru1);
}
}
结果:
2、用HashMap和链表实现:
主要的思想和上述基本一致,每次添加元素或者读取元素就将元素放置在链表的头,当缓存满了之后,就可以将尾结点元素删除,这样就实现了LRU缓存。
这种方法中是通过自己编写代码移动结点和删除结点,为了防止缓存大小超过限制,每次进行put的时候都会进行检查,若缓存满了则删除尾部元素。
public class LRU2<K, V> {
private final int MAX_CACHE_SIZE;
private Entry<K, V> head;
private Entry<K, V> tail;
private HashMap<K, Entry<K, V>> cache;
public LRU2(int cacheSize) {
MAX_CACHE_SIZE = cacheSize;
cache = new HashMap<>();
}
public void put(K key, V value) {
Entry<K, V> entry = getEntry(key);
if (entry == null) {
if (cache.size() >= MAX_CACHE_SIZE) {
cache.remove(tail.key);
removeTail();
}
entry = new Entry<>();
entry.key = key;
entry.value = value;
moveToHead(entry);
cache.put(key, entry);
} else {
entry.value = value;
moveToHead(entry);
}
}
public V get(K key) {
Entry<K, V> entry = getEntry(key);
if (entry == null) {
return null;
}
moveToHead(entry);
return entry.value;
}
public void remove(K key) {
Entry<K, V> entry = getEntry(key);
if (entry != null) {
if (entry == head) {
Entry<K, V> next = head.next;
head.next = null;
head = next;
head.pre = null;
} else if (entry == tail) {
Entry<K, V> prev = tail.pre;
tail.pre = null;
tail = prev;
tail.next = null;
} else {
entry.pre.next = entry.next;
entry.next.pre = entry.pre;
}
cache.remove(key);
}
}
private void removeTail() {
if (tail != null) {
Entry<K, V> prev = tail.pre;
if (prev == null) {
head = null;
tail = null;
} else {
tail.pre = null;
tail = prev;
tail.next = null;
}
}
}
private void moveToHead(Entry<K, V> entry) {
if (entry == head) {
return;
}
if (entry.pre != null) {
entry.pre.next = entry.next;
}
if (entry.next != null) {
entry.next.pre = entry.pre;
}
if (entry == tail) {
Entry<K, V> prev = entry.pre;
if (prev != null) {
tail.pre = null;
tail = prev;
tail.next = null;
}
}
if (head == null || tail == null) {
head = tail = entry;
return;
}
entry.next = head;
head.pre = entry;
entry.pre = null;
head = entry;
}
private Entry<K, V> getEntry(K key) {
return cache.get(key);
}
private static class Entry<K, V> {
Entry<K, V> pre;
Entry<K, V> next;
K key;
V value;
}
@Override
public String toString() {
StringBuilder stringBuilder = new StringBuilder();
Entry<K, V> entry = head;
while (entry != null) {
stringBuilder.append(String.format("%s:%s ", entry.key, entry.value));
entry = entry.next;
}
return stringBuilder.toString();
}
public static void main(String[] args) {
LRU2<Integer, Integer> lru2 = new LRU2<>(5);
lru2.put(1, 1);
System.out.println(lru2);
lru2.put(2, 2);
System.out.println(lru2);
lru2.put(3, 3);
System.out.println(lru2);
lru2.get(1);
System.out.println(lru2);
lru2.put(4, 4);
lru2.put(5, 5);
lru2.put(6, 6);
System.out.println(lru2);
}
}
结果:
来源:oschina
链接:https://my.oschina.net/u/2286010/blog/3093764