问题
I have a CSV file (corpus.csv) with graded abstracts (text) in the following format in corpus:
Institute, Score, Abstract
----------------------------------------------------------------------
UoM, 3.0, Hello, this is abstract one
UoM, 3.2, Hello, this is abstract two and yet counting.
UoE, 3.1, Hello, yet another abstract but this is a unique one.
UoE, 2.2, Hello, please no more abstract.
I am trying to create a KNN classification program in python, which is able to get an user input abstract such as, "This is a new unique abstract" and then classify this user input abstract closest to the corpus (CSV) and also returns the score/grade of the predicted abstract. How can I achieve that?
I have the following code:
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.corpus import stopwords
import numpy as np
import pandas as pd
from csv import reader,writer
import operator as op
import string
#Read data from corpus
r = reader(open('corpus.csv','r'))
abstract_list = []
score_list = []
institute_list = []
row_count = 0
for row in list(r)[1:]:
institute,score,abstract = row
if len(abstract.split()) > 0:
institute_list.append(institute)
score = float(score)
score_list.append(score)
abstract = abstract.translate(string.punctuation).lower()
abstract_list.append(abstract)
row_count = row_count + 1
print("Total processed data: ", row_count)
#Vectorize (TF-IDF, ngrams 1-4, no stop words) using sklearn -->
vectorizer = TfidfVectorizer(analyzer='word', ngram_range=(1,4),
min_df = 0, stop_words = 'english', sublinear_tf=True)
response = vectorizer.fit_transform(abstract_list)
feature_names = vectorizer.get_feature_names()
In the aforementioned code, how can I use the features from TF-IDF computation for KNN classification as mentioned above? (Probably using sklearn.neighborsKNeighborsClassifier framework)
P.S. The classes for this applicative case are the respective scores/grades of the abstracts.
I have background in visual Deep Learning, however, I lack much knowledge in text classification, especially using KNN. Any help would be much appreciated. Thank you in advance.
回答1:
KNN is a classification algorithm - meaning you have to have a class attribute. KNN can use the output of TFIDF as the input matrix - TrainX, but you still need TrainY - the class for each row in your data. However, you could use a KNN regressor. Use your scores as the class variable:
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.corpus import stopwords
import numpy as np
import pandas as pd
from csv import reader,writer
import operator as op
import string
from sklearn import neighbors
#Read data from corpus
r = reader(open('corpus.csv','r'))
abstract_list = []
score_list = []
institute_list = []
row_count = 0
for row in list(r)[1:]:
institute,score,abstract = row[0], row[1], row[2]
if len(abstract.split()) > 0:
institute_list.append(institute)
score = float(score)
score_list.append(score)
abstract = abstract.translate(string.punctuation).lower()
abstract_list.append(abstract)
row_count = row_count + 1
print("Total processed data: ", row_count)
#Vectorize (TF-IDF, ngrams 1-4, no stop words) using sklearn -->
vectorizer = TfidfVectorizer(analyzer='word', ngram_range=(1,4),
min_df = 0, stop_words = 'english', sublinear_tf=True)
response = vectorizer.fit_transform(abstract_list)
classes = score_list
feature_names = vectorizer.get_feature_names()
clf = neighbors.KNeighborsRegressor(n_neighbors=1)
clf.fit(response, classes)
clf.predict(response)
The "predict" will predict the score for each instance.
来源:https://stackoverflow.com/questions/59057351/knn-for-text-classification-using-tf-idf-scores