rsa公钥密码和签名含C语言代码

心已入冬 提交于 2020-12-05 16:55:03

RSA是目前使用最广泛的公钥密码体制之一。它是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。
RSA算法的安全性基于RSA问题的困难性,也就是基于大整数因子分解的困难性上。但是RSA问题不会比因子分解问题更加困难,也就是说,在没有解决因子分解问题的情况下可能解决RSA问题,因此RSA算法并不是完全基于大整数因子分解的困难性上的。
**

1.欧拉函数

什么是欧拉函数
  欧拉函数是小于x的整数中与x互素的数的个数,一般用φ(x)表示。特殊的,φ(1)=1.
如何计算欧拉函数
  通式:φ(n)=n*(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)(1-1/pn),其中p1, p2……pn为n的所有素因数,n是不为0的整数.
欧拉函数的一些性质  
  1. 对于素数p,φ§=p−1  2. 若p为素数,n=pk,则φ(n)=pk-p^(k-1)   3. 欧拉函数是积性函数,但不是完全积性函数;若m,n互素,则φ(m∗n)=φ(m)∗φ(n),特殊的,当m=2,n为奇数时,φ(2

n)=φ(n)  4. 当n>2时,φ(n)是偶数  5. 小于n的数中,与n互素的数的总和为:φ(n) * n / 2 (n>1)  6. n=∑d∣n​φ(d),即n的因数(包括1和它自己)的欧拉函数之和等于n


欧拉定理

欧拉定理是指:如果两个正整数a和n互素,则n的欧拉函数φ(n)可以让下面的式子成立:

即a的φ(n)次方减去1,可以被n整除. 比如,3和4互质,φ(4)=2,(3^2-1)/4=2. 当a为正整数,n为素数且a不能被n整除时,则有           a^(n-1) ≡ 1 (mod n)这就是费马小定理.

模反元素

如果两个正整数a和n互素,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1. 这时,b就叫做a对模数n的模反元素.

欧拉定理可以用来证明模反元素必然存在,如下图,可以看到:a的 φ(n)-1 次方,就是a对模数n的模反元素.

RSA算法

5.1 密钥的生成过程

  1. 随意选择两个大的素数p和q,p不等于q,计算n = pq.
  2. 根据欧拉函数的性质3,求得r=φ(n)=φ§φ(q)=(p-1)(q-1).
  3. 选择一个小于r的整数e,且e与r互素;并求得e关于r的模反元素,命名为d.(模反元素存在,当且仅当e与r互质; 求d令ed≡1(mod r))
  4. 将p和q的记录销毁
      其中(n,e)是公钥,(n,d)是私钥. 例如:
  5. A随机选两个不相等的质数61和53,并计算两数的积n=61*53=3233,n的长度就是密钥长度。3233的二进制是110010100001,一共12位,
    所以这个密钥就是12位. 实际应用中,RSA密钥一般是1024位,重要的场合是2048位.
  6. 计算n的欧拉函数; φ(n)=(p-1)(q-1)=60*52=3120.
  7. A在1到3120上随机选择了一个随机数e=17,与3120互素.
  8. 计算e对φ(n)的模反元素d,即时,ed-1=kφ(n)。
    即使求解:17x+3120y=1.用扩展欧几里得算法求解。可以算出一组解(x,y)=(2753,-15),即d=2753. 公钥(3233, 17),私钥(3233,2753)
      至此完成计算.5.2 RSA的可靠性    在RSA私钥和公钥生成的过程中,共出现过p,q,n,φ(N),e,d,其中n,e组成公钥,其他的都不是公开的,一旦d泄露,就等于私钥泄露;  那么能不能根据n,e推导出d呢?    1. ed ≡ 1(mod φ(n)) 只有知道e和φ(n),才能算出d     2. φ(n)=(p-1)(q-1) 只有知道p和q,才能算出φ(n)    3. n=pq,只有将n分解才能算出p和q  所以,只有将n素因数分解,才能算出d; 也就意味着私钥破译. 但是,大整数的质因数分解是非常困难的. 所以理论上来说,如果我们找到  了快速对大整数进行质因数分解的方法,那么RSA加密也就没什么安全性可言了;遗憾的是,目前数学上并没有找到这样快速的质因数分解方法.5.3 RSA的加密过程    假设A要向B发送加密信息m,他就要用B的公钥(n,e)对m进行加密,但m必须是整数(字符串可以取ascii值或unicode值),且m必须小  于n. 所谓加密就是计算下式的c:    m^e ≡ c (mod n)  假设m=65,B的公钥(3233,17),所以等式如下:    65^17≡2790(mod 3233)  所以c等于2790,A就把2790发给B.5.4 RSA的解密过程    B收到A发来的2790后,就用自己的私钥(3233,2755)进行解密      c^d ≡ m (mod n)  也就是c的d次方除以n的余数就是m      2790^2753 ≡ 65 (mod 3233)  因此得到原文65.

C语言代码

**

#include <stdio.h>
int candp(int a,int b,int c)
{
   
    
	int r=1;
	b=b+1;
	while(b!=1)
	{
   
   
	    r=r*a;
	    r=r%c;
	    b--;
	}
	
	return r;
}
main()
{
   
   
	int p,q,e,d,m,n,t,c,r;
	char s;
	printf("请输入大素数p和q ");
	scanf("%d%d",&p,&q);
	n=p*q;
	printf("n=%3d\n",n);
	t=(p-1)*(q-1);
	printf("t=%3d\n",t);
	printf("请输入 e: ");
	scanf("%d",&e);
	if(e<1||e>t)
	{
   
   
	     printf("输入的e不合规,请重新输入 ");
	     scanf("%d",&e);
	}
	d=1;
	while(((e*d)%t)!=1)   d++;
	printf("计算d的结果为 %d\n",d);
	printf("加密请输入 1\n");
	printf("解密请输入 2\n");
	scanf("%d",&r);
	switch(r)
	{
   
   
	    case 1: printf("输入明文m: "); /*输入要加密的明文数字*/
	            scanf("%d",&m);
	            c=candp(m,e,n);
	            printf("密文为 %d\n",c);break;
	    case 2: printf("输入密文 c: "); /*输入要解密的密文数字*/
	            scanf("%d",&c);
	            m=candp(c,d,n);
	            printf("明文为 %d\n",m);break;
	}
	getchar();
}
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!