Finding the longest repeated substring

余生颓废 提交于 2019-11-27 23:07:08

Have a look at http://en.wikipedia.org/wiki/Suffix_array as well - they are quite space-efficient and have some reasonably programmable algorithms to produce them, such as "Simple Linear Work Suffix Array Construction" by Karkkainen and Sanders

user1071840

Check out this link: http://introcs.cs.princeton.edu/java/42sort/LRS.java.html

/*************************************************************************
 *  Compilation:  javac LRS.java
 *  Execution:    java LRS < file.txt
 *  Dependencies: StdIn.java
 *  
 *  Reads a text corpus from stdin, replaces all consecutive blocks of
 *  whitespace with a single space, and then computes the longest
 *  repeated substring in that corpus. Suffix sorts the corpus using
 *  the system sort, then finds the longest repeated substring among 
 *  consecutive suffixes in the sorted order.
 * 
 *  % java LRS < mobydick.txt
 *  ',- Such a funny, sporty, gamy, jesty, joky, hoky-poky lad, is the Ocean, oh! Th'
 * 
 *  % java LRS 
 *  aaaaaaaaa
 *  'aaaaaaaa'
 *
 *  % java LRS
 *  abcdefg
 *  ''
 *
 *************************************************************************/


import java.util.Arrays;

public class LRS {

    // return the longest common prefix of s and t
    public static String lcp(String s, String t) {
        int n = Math.min(s.length(), t.length());
        for (int i = 0; i < n; i++) {
            if (s.charAt(i) != t.charAt(i))
                return s.substring(0, i);
        }
        return s.substring(0, n);
    }


    // return the longest repeated string in s
    public static String lrs(String s) {

        // form the N suffixes
        int N  = s.length();
        String[] suffixes = new String[N];
        for (int i = 0; i < N; i++) {
            suffixes[i] = s.substring(i, N);
        }

        // sort them
        Arrays.sort(suffixes);

        // find longest repeated substring by comparing adjacent sorted suffixes
        String lrs = "";
        for (int i = 0; i < N - 1; i++) {
            String x = lcp(suffixes[i], suffixes[i+1]);
            if (x.length() > lrs.length())
                lrs = x;
        }
        return lrs;
    }



    // read in text, replacing all consecutive whitespace with a single space
    // then compute longest repeated substring
    public static void main(String[] args) {
        String s = StdIn.readAll();
        s = s.replaceAll("\\s+", " ");
        StdOut.println("'" + lrs(s) + "'");
    }
}

Here is a simple implementation of longest repeated substring using simplest suffix tree. Suffix tree is very easy to implement in this way.

#include <iostream>
#include <vector>
#include <unordered_map>
#include <string>
using namespace std;

class Node
{
public:
    char ch;
    unordered_map<char, Node*> children;
    vector<int> indexes; //store the indexes of the substring from where it starts
    Node(char c):ch(c){}
};

int maxLen = 0;
string maxStr = "";

void insertInSuffixTree(Node* root, string str, int index, string originalSuffix, int level=0)
{
    root->indexes.push_back(index);

    // it is repeated and length is greater than maxLen
    // then store the substring
    if(root->indexes.size() > 1 && maxLen < level)
    {
        maxLen = level;
        maxStr = originalSuffix.substr(0, level);
    }

    if(str.empty()) return;

    Node* child;
    if(root->children.count(str[0]) == 0) {
        child = new Node(str[0]);
        root->children[str[0]] = child;
    } else {
        child = root->children[str[0]];
    }

    insertInSuffixTree(child, str.substr(1), index, originalSuffix, level+1);
}

int main()
{
    string str = "banana"; //"abcabcaacb"; //"banana";  //"mississippi";
    Node* root = new  Node('@');

    //insert all substring in suffix tree
    for(int i=0; i<str.size(); i++){
        string s = str.substr(i);
        insertInSuffixTree(root, s, i, s);
    }

    cout << maxLen << "->" << maxStr << endl;

    return 1;
}

/*
s = "mississippi", return "issi"
s = "banana", return "ana"
s = "abcabcaacb", return "abca"
s = "aababa", return "aba"
*/

the LRS problem is one that is best solved using either a suffix tree or a suffix array. Both approaches have a best time complexity of O(n).

Here is an O(nlog(n)) solution to the LRS problem using a suffix array. My solution can be improved to O(n) if you have a linear construction time algorithm for the suffix array (which is quite hard to implement). The code was taken from my library. If you want more information on how suffix arrays work make sure to check out my tutorials

/**
 * Finds the longest repeated substring(s) of a string.
 * 
 * Time complexity: O(nlogn), bounded by suffix array construction
 *
 * @author William Fiset, william.alexandre.fiset@gmail.com
 **/

import java.util.*;

public class LongestRepeatedSubstring {

  // Example usage
  public static void main(String[] args) {

    String str = "ABC$BCA$CAB";
    SuffixArray sa = new SuffixArray(str);
    System.out.printf("LRS(s) of %s is/are: %s\n", str, sa.lrs());

    str = "aaaaa";
    sa = new SuffixArray(str);
    System.out.printf("LRS(s) of %s is/are: %s\n", str, sa.lrs());

    str = "abcde";
    sa = new SuffixArray(str);
    System.out.printf("LRS(s) of %s is/are: %s\n", str, sa.lrs());

  }

}

class SuffixArray {

  // ALPHABET_SZ is the default alphabet size, this may need to be much larger
  int ALPHABET_SZ = 256, N;
  int[] T, lcp, sa, sa2, rank, tmp, c;

  public SuffixArray(String str) {    
    this(toIntArray(str));    
  }

  private static int[] toIntArray(String s) {   
    int[] text = new int[s.length()];   
    for(int i=0;i<s.length();i++)text[i] = s.charAt(i);   
    return text;    
  }

  // Designated constructor
  public SuffixArray(int[] text) {
    T = text;
    N = text.length;
    sa = new int[N];
    sa2 = new int[N];
    rank = new int[N];
    c = new int[Math.max(ALPHABET_SZ, N)];
    construct();
    kasai();
  }

  private void construct() {
    int i, p, r;
    for (i=0; i<N; ++i) c[rank[i] = T[i]]++;
    for (i=1; i<ALPHABET_SZ; ++i) c[i] += c[i-1];
    for (i=N-1; i>=0; --i) sa[--c[T[i]]] = i;
    for (p=1; p<N; p <<= 1) {
      for (r=0, i=N-p; i<N; ++i) sa2[r++] = i;
      for (i=0; i<N; ++i) if (sa[i] >= p) sa2[r++] = sa[i] - p;
      Arrays.fill(c, 0, ALPHABET_SZ, 0);
      for (i=0; i<N; ++i) c[rank[i]]++;
      for (i=1; i<ALPHABET_SZ; ++i) c[i] += c[i-1];
      for (i=N-1; i>=0; --i) sa[--c[rank[sa2[i]]]] = sa2[i];
      for (sa2[sa[0]] = r = 0, i=1; i<N; ++i) {
          if (!(rank[sa[i-1]] == rank[sa[i]] &&
              sa[i-1]+p < N && sa[i]+p < N &&
              rank[sa[i-1]+p] == rank[sa[i]+p])) r++;
          sa2[sa[i]] = r;
      } tmp = rank; rank = sa2; sa2 = tmp;
      if (r == N-1) break; ALPHABET_SZ = r + 1;
    }
  }

  // Use Kasai algorithm to build LCP array
  private void kasai() {
    lcp = new int[N];
    int [] inv = new int[N];
    for (int i = 0; i < N; i++) inv[sa[i]] = i;
    for (int i = 0, len = 0; i < N; i++) {
      if (inv[i] > 0) {
        int k = sa[inv[i]-1];
        while( (i + len < N) && (k + len < N) && T[i+len] == T[k+len] ) len++;
        lcp[inv[i]-1] = len;
        if (len > 0) len--;
      }
    }
  }

  // Finds the LRS(s) (Longest Repeated Substring) that occurs in a string.
  // Traditionally we are only interested in substrings that appear at
  // least twice, so this method returns an empty set if this is not the case.
  // @return an ordered set of longest repeated substrings
  public TreeSet <String> lrs() {

    int max_len = 0;
    TreeSet <String> lrss = new TreeSet<>();

    for (int i = 0; i < N; i++) {
      if (lcp[i] > 0 && lcp[i] >= max_len) {

        // We found a longer LRS
        if ( lcp[i] > max_len )
          lrss.clear();

        // Append substring to the list and update max
        max_len = lcp[i];
        lrss.add( new String(T, sa[i], max_len) );

      }
    }

    return lrss;

  }

  public void display() {
    System.out.printf("-----i-----SA-----LCP---Suffix\n");
    for(int i = 0; i < N; i++) {
      int suffixLen = N - sa[i];
      String suffix = new String(T, sa[i], suffixLen);
      System.out.printf("% 7d % 7d % 7d %s\n", i, sa[i],lcp[i], suffix );
    }
  }

}
Srihari Konakanchi
public class LongestSubString {

    public static void main(String[] args) {
        String s = findMaxRepeatedString("ssssssssssss this is a ddddddd word with iiiiiiiiiis and loads of these are ppppppppppppps");
        System.out.println(s);
    }

    private static String findMaxRepeatedString(String s) {
        Processor p = new Processor();
        char[] c = s.toCharArray();
        for (char ch : c) {
            p.process(ch);
        } 
        System.out.println(p.bigger());
        return new String(new char[p.bigger().count]).replace('\0', p.bigger().letter);
    }

    static class  CharSet {
        int count;
        Character letter;
        boolean isLastPush;

        boolean assign(char c) {
            if (letter == null) {
                count++;
                letter = c;
                isLastPush = true;
                return true;
            }
            return false;
        }

        void reassign(char c) {
            count = 1;
            letter = c;
            isLastPush = true;
        }

        boolean push(char c) {
            if (isLastPush && letter == c) {
                count++;
                return true;
            }
            return false;
        }

        @Override
        public String toString() {
            return "CharSet [count=" + count + ", letter=" + letter + "]";
        }

    }

    static class  Processor {

        Character previousLetter = null;
        CharSet set1 = new CharSet();
        CharSet set2 = new CharSet();

        void process(char c) {
            if ((set1.assign(c)) || set1.push(c)) {
                set2.isLastPush = false;
            } else if ((set2.assign(c)) || set2.push(c)) {
                set1.isLastPush = false;                
            } else {
                set1.isLastPush = set2.isLastPush = false;
                smaller().reassign(c);
            }
        }       

        CharSet smaller() {
            return set1.count < set2.count ? set1 : set2;
        }

        CharSet bigger() {
            return set1.count < set2.count ? set2 : set1;
        }

    }   
}

There are way too many things that affect performance for us to answer this question with only what you've given us. (Operating System, language, memory issues, the code itself)

If you're just looking for a mathematical analysis of the algorithm's efficiency, you probably want to change the question.

EDIT

When I mentioned "memory issues" and "the code" I didn't provide all the details. The length of the strings you will be analyzing are a BIG factor. Also, the code doesn't operate alone - it must sit inside a program to be useful. What are the characteristics of that program which impact this algorithm's use and performance?

Basically, you can't performance tune until you have a real situation to test. You can make very educated guesses about what is likely to perform best, but until you have real data and real code, you'll never be certain.

I had an interview and I needed to solve this problem. This is my solution:

public class FindLargestSubstring {

public static void main(String[] args) {
    String test = "ATCGATCGA";
    System.out.println(hasRepeatedSubString(test));
}

private static String hasRepeatedSubString(String string) {
    Hashtable<String, Integer> hashtable = new Hashtable<>();
    int length = string.length();
    for (int subLength = length - 1; subLength > 1; subLength--) {
        for (int i = 0; i <= length - subLength; i++) {
            String sub = string.substring(i, subLength + i);
            if (hashtable.containsKey(sub)) {
                return sub;
            } else {
                hashtable.put(sub, subLength);
            }
        }
    }
    return "No repeated substring!";
}}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!