numpy.ndarray常用属性和方法

天大地大妈咪最大 提交于 2020-11-11 04:52:24
import numpy as np

a = np.array([[1,2,3],[4,3,2],[6,3,5]])
print(a)

[[1 2 3]
[4 3 2] [6 3 5]] print(a.ndim) # array的维度 2 print(a.dtype) # array元素的数据类型 int32 print(a.shape) # array每个维度的大小 (3, 3) print(a.T) # array的转置 [[1 4 6] [2 3 3] [3 2 5]] print(a.real) # array每个元素的实部 [[1 2 3] [4 3 2] [6 3 5]] print(a.imag) # array每个元素的虚部 [[0 0 0] [0 0 0] [0 0 0]] print(a.flat[1],a.flat[2:5]) # 将array变成一维的基础上对其进行索引 print(a) a.flat[[1,4]]=8 # 将array对应位置的值进行改变 print(a) 2 [3 4 3] [[1 2 3] [4 3 2] [6 3 5]] [[1 8 3] [4 8 2] [6 3 5]] b = a.tolist() # 将array变成python列表并返回 print(b) [[1, 8, 3], [4, 8, 2], [6, 3, 5]] c = a.copy() # 拷贝array并返回,对得到array进行改变不会影响原来的array c[1,1] = 100 print("c:",c) print("a:",a) print(id(c),id(a)) c: [[ 1 8 3] [ 4 100 2] [ 6 3 5]] a: [[1 8 3] [4 8 2] [6 3 5]] 1319291177280 1319291122112 d = a.view() # 将array的数据进行另外一个可视化,两者id不同,但进行修改时会影响 print(id(d),id(a)) d[1,1] = 200 print("d:",d) print("a:",a) a[1,1] = 150 print("d:",d) print("a:",a) 1319291176960 1319291122112 d: [[ 1 8 3] [ 4 200 2] [ 6 3 5]] a: [[ 1 8 3] [ 4 200 2] [ 6 3 5]] d: [[ 1 8 3] [ 4 150 2] [ 6 3 5]] a: [[ 1 8 3] [ 4 150 2] [ 6 3 5]] a.fill(5) # 以指定的值填充array print(a) [[5 5 5] [5 5 5] [5 5 5]] a = np.array([[1,3,5],[2,6,3],[9,6,4],[10,2,8]]) b = a.reshape((2,3,2)) # 在原数据的基础上改变维度,返回一个新array,不改变原来的array print(a) print(b) [[ 1 3 5] [ 2 6 3] [ 9 6 4] [10 2 8]] [[[ 1 3] [ 5 2] [ 6 3]] [[ 9 6] [ 4 10] [ 2 8]]] c = b.transpose() # 返回一个转置后的array,可以指定维度顺序,不改变原来的array print(c,"\n================") d = b.transpose(0,2,1) print(d) [[[ 1 9] [ 5 4] [ 6 2]] [[ 3 6] [ 2 10] [ 3 8]]] ================ [[[ 1 5 6] [ 3 2 3]] [[ 9 4 2] [ 6 10 8]]] print(b) e = b.flatten() # 把array变成一维的 print(e) f = b.ravel() print(f) [[[ 1 3] [ 5 2] [ 6 3]] [[ 9 6] [ 4 10] [ 2 8]]] [ 1 3 5 2 6 3 9 6 4 10 2 8] [ 1 3 5 2 6 3 9 6 4 10 2 8] g = b.take([0,6]) # 通过索引获取array中的元素并返回新的array,可以通过axis参数指定维度 h = b.take([0,2],axis=1) i = b.take(1,axis=0) print(g,"\n===================") print(h,"\n===================") print(i) [1 9] =================== [[[1 3] [6 3]] [[9 6] [2 8]]] =================== [[ 9 6] [ 4 10] [ 2 8]] b = np.array([[[ 1,3], [ 5 ,2], [ 6 ,3]], ​ [[ 9 ,6], [ 4 ,10], [ 2 ,8]]]) print(b,"\n============================") b.sort(axis=0) print(b,"\n============================") b.sort(axis=1) print(b,"\n============================") b = np.array([[[ 1,3], [ 5 ,2], [ 6 ,3]], ​ [[ 9 ,6], [ 4 ,10], [ 2 ,8]]]) b.sort() print(b) """ sort进行排序时,可以通过axis指定维度,默认为最后一维,正序 当指定axis=0时,在第一个维度上排序,本例中该维度上有2个部分。 排序时,把两部分当做两个独立的array比较大小(元素位置一一对应), 顺序不符合要求的进行交换。当axis=1时,在第二个维度上排序, 此时不考虑外部第一个维度中两个部分的顺序,只分别对第二个维度上 三个小array进行同样的排序 """ print(b.max(axis=-1)) # 返回最大值,最小值,不指定axis时,在所有元素中进行比较 print(b.max()) print(b.min()) [[ 3 5 6] [ 9 10 8]] 10 1 print(b.argmax(axis=1)) # 返回最大值,最小值的索引,不指定axis时,在所有元素中进行比较 print(b.argmin()) [[2 2] [0 1]] 0 print(b.ptp()) # 返回最大值,最小值的差值,不指定axis时,在所有元素中进行比较 print(b.ptp(axis=1)) 9 [[2 3] [4 2]] c = b.clip([2,7]) # 将array中所有元素限制在指定的大小范围,超出范围的用指定的边界值代替 print(c) [[[ 2 7] [ 2 7] [ 3 7]] [[ 6 9] [ 4 10] [ 2 8]]] a = np.arange(9).reshape(3,3) #求array对角线上元素的和 print(a.trace()) b = np.arange(8).reshape(2,4) print(b.trace()) 12 5 a = np.floor(10*np.random.random((2,3,4))) print(a) print(a.sum()) # 求和 print(a.sum(axis=1)) [[[0. 0. 1. 8.] [0. 3. 0. 2.] [5. 3. 9. 8.]] [[9. 0. 1. 5.] [7. 6. 9. 6.] [7. 5. 6. 7.]]] 107.0 [[ 5. 6. 10. 18.] [23. 11. 16. 18.]] a = np.floor(10*np.random.random((2,3))) print(a) print(a.cumsum()) # 求累加和 print(a.cumsum(axis=1)) [[7. 3. 1.] [6. 8. 8.]] [ 7. 10. 11. 17. 25. 33.] [[ 7. 10. 11.] [ 6. 14. 22.]] a = np.floor(10*np.random.random((2,3))) print(a) print(a.mean()) # 求均值 print(a.mean(axis=1)) [[6. 6. 1.] [9. 8. 5.]] 5.833333333333333 [4.33333333 7.33333333] a = np.floor(10*np.random.random((2,3))) print(a) print(a.var()) # 求方差 print(a.var(axis=1)) [[7. 0. 0.] [2. 0. 4.]] 6.805555555555557 [10.88888889 2.66666667] a = np.floor(10*np.random.random((2,3))) print(a) print(a.std()) # 求标准差 print(a.std(axis=0)) [[9. 1. 1.] [6. 4. 1.]] 3.0368111930481 [1.5 1.5 0. ] a = np.floor(10*np.random.random((2,3))) print(a) print(a.prod()) # 求积 print(a.prod(axis=0)) [[5. 7. 4.] [8. 9. 8.]] 80640.0 [40. 63. 32.] a = np.floor(10*np.random.random((2,3))) print(a) print(a.cumprod()) # 求累积 print(a.cumprod(axis=1)) [[1. 1. 8.] [9. 6. 6.]] [1.000e+00 1.000e+00 8.000e+00 7.200e+01 4.320e+02 2.592e+03] [[ 1. 1. 8.] [ 9. 54. 324.]] a = np.array([[1,0,2],[-1,3,5]]) print(a.all()) # 所有元素都为True,返回True,否则返回Flase a = np.array([[1,2,2],[-1,3,5]]) print(a.all()) False True

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!