BP 神经网络用于模式分类

感情迁移 提交于 2020-10-02 10:40:35

% BP 神经网络用于模式分类
 

clc
clear
close all

%---------------------------------------------------
% 产生训练样本与测试样本,每一列为一个样本

P1 = [rand(3,5),rand(3,5)+1,rand(3,5)+2];
T1 = [repmat([1;0;0],1,5),repmat([0;1;0],1,5),repmat([0;0;1],1,5)];

P2 = [rand(3,5),rand(3,5)+1,rand(3,5)+2];
T2 = [repmat([1;0;0],1,5),repmat([0;1;0],1,5),repmat([0;0;1],1,5)];

%---------------------------------------------------
% 归一化

[PN1,minp,maxp] = premnmx(P1);
PN2 = tramnmx(P2,minp,maxp);

%---------------------------------------------------
% 设置网络参数

NodeNum = 10; % 隐层节点数
TypeNum = 3; % 输出维数

TF1 = 'tansig';TF2 = 'purelin'; % 判别函数(缺省值)
%TF1 = 'tansig';TF2 = 'logsig';
%TF1 = 'logsig';TF2 = 'purelin';
%TF1 = 'tansig';TF2 = 'tansig';
%TF1 = 'logsig';TF2 = 'logsig';
%TF1 = 'purelin';TF2 = 'purelin';




net = newff(minmax(PN1),[NodeNum TypeNum],{TF1 TF2});

%---------------------------------------------------
% 指定训练参数

% net.trainFcn = 'traingd'; % 梯度下降算法
% net.trainFcn = 'traingdm'; % 动量梯度下降算法
%
% net.trainFcn = 'traingda'; % 变学习率梯度下降算法
% net.trainFcn = 'traingdx'; % 变学习率动量梯度下降算法
%
% (大型网络的首选算法 - 模式识别)
% net.trainFcn = 'trainrp'; % RPROP(弹性BP)算法,内存需求最小
%
% 共轭梯度算法
% net.trainFcn = 'traincgf'; % Fletcher-Reeves修正算法
% net.trainFcn = 'traincgp'; % Polak-Ribiere修正算法,内存需求比Fletcher-Reeves修正算法略大
% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求比Polak-Ribiere修正算法略大
% (大型网络的首选算法 - 函数拟合,模式识别)
% net.trainFcn = 'trainscg'; % Scaled Conjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量比上面三种算法都小很多
%
% net.trainFcn = 'trainbfg'; % Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均比共轭梯度算法大,但收敛比较快
% net.trainFcn = 'trainoss'; % One Step Secant Algorithm,计算量和内存需求均比BFGS算法小,比共轭梯度算法略大
%
% (中小型网络的首选算法 - 函数拟合,模式识别)
net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法,内存需求最大,收敛速度最快
%
% net.trainFcn = 'trainbr'; % 贝叶斯正则化算法
%
% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm'























%---------------------%

net.trainParam.show = 1; % 训练显示间隔
net.trainParam.lr = 0.3; % 学习步长 - traingd,traingdm
net.trainParam.mc = 0.95; % 动量项系数 - traingdm,traingdx
net.trainParam.mem_reduc = 10; % 分块计算Hessian矩阵(仅对Levenberg-Marquardt算法有效)
net.trainParam.epochs = 1000; % 最大训练次数
net.trainParam.goal = 1e-8; % 最小均方误差
net.trainParam.min_grad = 1e-20; % 最小梯度
net.trainParam.time = inf; % 最大训练时间






%---------------------------------------------------
% 训练与测试

net = train(net,PN1,T1); % 训练

%---------------------------------------------------
% 测试

Y1 = sim(net,PN1); % 训练样本实际输出
Y2 = sim(net,PN2); % 测试样本实际输出

Y1 = full(compet(Y1)); % 竞争输出
Y2 = full(compet(Y2));

%---------------------------------------------------
% 结果统计

Result = ~sum(abs(T1-Y1)) % 正确分类显示为1
Percent1 = sum(Result)/length(Result) % 训练样本正确分类率

Result = ~sum(abs(T2-Y2)) % 正确分类显示为1
Percent2 = sum(Result)/length(Result) % 测试样本正确分类率

 

******************************************************************

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!